五阳煤矿中学八年级数学(教)学案课题勾股定理(二)班级姓名组别一、学习目标1.会用勾股定理进行简单的计算。2.树立数形结合的思想、分类讨论思想。二、重点、难点1.重点:勾股定理的简单计算。2.难点:勾股定理的灵活运用。3.难点的突破方法:⑴数形结合,同学们每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。⑵分类讨论,同学们画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力⑶作辅助线,勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。三、学习过程(一)课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用(二)、本题目的:使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。例1(补充)在Rt△ABC,∠C=90°⑴已知a=b=5,求c。⑵已知a=1,c=2,求b。⑶已知c=17,b=8,求a。⑷已知a:b=1:2,c=5,求a。⑸已知b=15,∠A=30°,求a,c。本题目的:让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。例2(补充)已知直角三角形的两边长分别为5和12,求第三边。本题目的:勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。例3(补充)已知:如图,等边△ABC的边长是6cm。⑴求等边△ABC的高。⑵求S△ABC。四、课堂练习1.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=,b=。⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。⑹已知等边三角形的边长为2cm,则它的高为,面积为。2.已知:如图,在△ABC中,∠C=60°,AB=,AC=4,AD是BC边上的高,求BC的长。3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。五、课后练习1.填空题在Rt△ABC,∠C=90°,⑴如果a=7,c=25,则b=。⑵如果∠A=30°,a=4,则b=。⑶如果∠A=45°,a=3,则c=。⑷如果c=10,a-b=2,则b=。⑸如果a、b、c是连续整数,则a+b+c=。⑹如果b=8,a:c=3:5,则c=。2.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长。六、巩固训练双基淘宝仔细读题,一定要选择最佳答案哟!1.已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是()A.4cmB.cmC.6cmD.cm2.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或333.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动()A.9分米B.15分米C.5分米D.8分米4.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.5.在△ABC中,∠C=90°,(1)已知a=2.4,b=3.2,则c=;(2)已知c=17,b=15,则△ABC面积等于;(3)已知∠A=45°,c=18,则a=.6.一个矩形的抽斗长为24cm,宽为7cm,在里面放一根铁条,那么铁条最长可以是.7.在Rt△ABC中,∠C=90°,BC=12cm,S△ABC=30cm2,则AB=.8.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为.9.一个直角三角形的三边为三个连续偶数,则它的三边长分别为.10.一天,小明买了一张底面是边长为260cm的正方形,厚30cm的床垫回家.到了家门口,才发现门口只有242cm高,宽100cm.你认为小明能拿进屋吗?.综合运用认真解答,一定要细心哟!第4题图11....