实践与探索(第2课时)教学目的通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模型。重点、难点1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。2.难点:找出能表示整个题意的等量关系。教学过程一、复习1.储蓄中的利息、本金、利率、本利和等含义,它们之间的数量关系利息=本金×年利率×年数本利和=本金×利息×年数+本金2.商品利润等有关知识。利润=售价-成本=商品利润率二、新授在本章6.l练习中讨论过的教育储蓄,是我国目前暂不征收利息税的储种,国家对其他储蓄所产生的利息征收20%的个人所得税,即利息税。今天我们来探索一般的储蓄问题。问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?先让学生思考,试着列出方程,对有困难的学生,教师可引导他们进行分析,找出等量关系。利息-利息税=48.6可设小明爸爸前年存了x元,那么二年后共得利息为2.43%×X×2,利息税为2.43%X×2×20%根据等量关系,得2.43%x·2-2.43%x×2×20%=48.6问,扣除利息的20%,那么实际得到的利息是多少?你能否列出较简单的方程?扣除利息的20%,实际得到利息的80%,因此可得2.43%x·2·80%=48.6解方程,得x=1250例1一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?大家想一想这15元的利润是怎么来的?标价的80%(即售价)-成本=15若设这种服装每件的成本是x元,那么每件服装的标价为:(1+40%)x每件服装的实际售价为:(1+40%)x·80%每件服装的利润为:(1+40%)x·80%-x由等量关系,列出方程:(1+40%)x·80%-x=15解方程,得x=125答:每件服装的成本是125元。三、巩固练习教科书第15页,练习1、2。四、小结本节课我们利用一元一次方程解决有关储蓄、商品利润等实际问题,当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。五、作业教科书第16页,习题6.3.1,第4、5题。6.3实践与探索(二)教学目标1.提高学生列方程解和、差、倍、半问题的能力,使学生注意所列方程中的单位要统一;2.培养学生解等积变形问题的能力教学重点和难点重点:列方程解等积变形问题难点:等积变形问题中找等量关系课堂教学过程设计一、从学生原有的认知结构提出问题1.列方程解应用题的一般步骤是什么?2.已知甲比乙多5个:(1)如果乙有a个,则甲有几个?(2)和等式表示甲、乙间的数量关系(甲-5=乙:甲-乙=5,甲=乙+5,三者之中答出一个即可)教师强调:由此题所列等式可以看到,“多的”应当减才能等于“少的”,或“少的”应当加才等于“多的”.列方程解应用题,不仅要注意单位在书写方面的要求,而且更要注意方程中的单位是否统一本节课,学习如何利用一元一次方程来解决有关和、差、倍、半问题及等积变形问题.二、讲授新课例1一瓶药水,用去它的后,又用去升,还剩下升,问这瓶药水原有多少升?师生共同分析:1.同学生审题并找出已知量、未知量?2.第一次用去它的,第二次用去升,“它的”和“升”是不是一回事(学生答)3.让学生找出题中存在的相等关系(原有的药水-原有药水的-升=升)以上问题,若学生在回答时有困难,教师应做适当点拨解:(学生口述,教师板书)设这瓶药水原有x升由题意,得x-x-=,解方程,x=8,所以x=12答:这瓶药水原有12升教师指出:所列方程的右、左两边的单位要统一;某数的与升不是一回事例2某工厂锻造直径为60毫米,高20毫米的圆柱形零件毛坯,需要截取直径40毫米的圆钢多长?师生共同分析:这是一个有关体积方面的应用问题那么圆柱体的体积公式是什么呢?(圆柱本积=底面积×高)由学生审题并找出题中的已知量、未知量,此时教师要讲授锻造的意义,使学生明确锻造时,...