图形的相似易错题汇编及答案一、选择题1.如图,O是AC的中点,将面积为216cm的菱形ABCD沿AC方向平移AO长度得到菱形OBCD,则图中阴影部分的面积是()A.28cmB.26cmC.24cmD.22cm【答案】C【解析】【分析】根据题意得,?ABCD∽?OECF,且AO=OC=12AC,故四边形OECF的面积是?ABCD面积的14【详解】解:如图,由平移的性质得,?ABCD∽?OECF,且AO=OC=12AC故四边形OECF的面积是?ABCD面积14即图中阴影部分的面积为4cm2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题.2.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:1【答案】B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】 四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA, DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选B.3.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx、2yx的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BEOEOFAF;设B为(a,1a),A为(b,2b),得到OE=-a,EB=1a,OF=b,AF=2b,进而得到222ab,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=22为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BEOEOFAF,设点B为(a,1a),A为(b,2b),则OE=-a,EB=1a,OF=b,AF=2b,可代入比例式求得222ab,即222ab,根据勾股定理可得:OB=22221OEEBaa,OA=22224OFAFbb,∴tan∠OAB=2222222212244baOBabOAbbbb=222214()24bbbb=22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.4.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()A.2244xyB.2244xyC.2288xyD.2288xy【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD=12AB=AD=4,由等腰三角形的性质得出∠A=∠ACD,得出tan∠ACD=GECE=tanA=y,证明△CEG∽△FEC,得出GECECEFE,得出y=2FE,求出y2=24FE,得出24y=FE2,再由勾股定理得出FE2=CF2﹣CE2=x2﹣4,即可得出答案.【详解】解:如图所示: 在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,∴CD=12AB=AD=4,∴∠A=∠ACD, EF垂直平分CD,∴CE=12CD=2,∠CEF=∠CEG=90°,∴tan∠ACD=GECE=tanA=y, ∠ACD+∠FCE=∠CFE+∠FCE=90°,∴∠ACD=∠FCE,∴△CEG∽△FEC,∴GECE=CEFE,∴y=2FE,∴y2=24FE,∴24y=FE2, FE2=CF2﹣CE2=x2﹣4,∴24y=x2﹣4,∴24y+4=x2,故选:A.【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.5.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6)B.(9,6)C.19,62D.(10,6)【答案】B【解析】【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.【详解】解: 正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13BCOBEFEO, BC=2,∴EF=BE=6, BC∥EF,∴△OBC∽△OEF,∴136BOBO,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形...