2020年山东省济南市章丘区中考数学模拟试卷(一)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)数2020的相反数是()A.B.﹣C.2020D.﹣20202.(4分)下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.(4分)2020年我国爆发“新冠肺炎”疫情,在党中央的坚强领导下,全国上下,众志成城,抗击疫情,截止2020年2月20号,累计确诊70637例,把数70637用科学记数法表示为()A.7.0637×104B.7.0637×105C.7.0637×103D.0.70637×1054.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=()A.70°B.100°C.110°D.120°5.(4分)下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面说法正确的是()年龄13141516频数5713■A.中位数可能是14B.中位数可能是14.5C.平均数可能是14D.众数可能是166.(4分)下列图形中,是中心对称图形的是()A.B.C.D.7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.8.(4分)抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致是()A.B.C.D.9.(4分)如图所示,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知大桥主架顶端离水面的高CD=a,则此时测量点与大桥主架的水平距离AB为()A.asinα+asinβB.atanα+atanβC.D.10.(4分)如图,已知点A(﹣6,0),B(2,0),点C在直线上,则使△ABC是直角三角形的点C的个数为()A.1B.2C.3D.411.(4分)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5D.612.(4分)已知函数y=,当a≤x≤b时,﹣≤y≤,则b﹣a的最大值为()A.1B.+1C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)分解因式:2x3﹣8x=.14.(4分)x等于数时,代数式的值比的值的2倍小1.15.(4分)如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为.16.(4分)如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为.17.(4分)甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发分钟时,乙追上了甲.18.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则=.三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣20180﹣|﹣5|+()﹣2﹣2cos60°20.(6分)解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.21.(6分)如图,矩形ABCD中,对角线AC、BD交于点O,以AD、OD为邻边作平行四边形ADOE,连接BE.求证:四边形AOBE为菱形.22.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?23.(8分)如图,△ABC内接于⊙O,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点E,在弦BC上取一点F,使AF=AE,连接AF并延长交⊙O于点D.(1)求证:∠B=∠CAD;(2)若CE=2,∠B=30°,求AD的长.24.(10分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择...