一元二次方程第13课时:二次三项式的因式分解(用公式法)(二)教学目标:1、熟练地运用公式法在实数范围内将二次三项式因式分解.2、通过本节课的教学,提高学生研究问题、解决问题的能力.教学重点:用公式法将二次三项式因式分解.教学难点:一元二次方程的根和二次三项因式分解的关系.教学过程:对于含有一个字母在实数范围内可分解的二次三项式,学生利用十字相乘法或用公式法可以解决.对于含有两个字母的二次三项式如何用公式法进行因式分解是我们本节课研究的目标.本节课是上节课的继续和深化,上节课主要练习了利用公式法将含有一个字母的二次三项式因式分解,这节课研究含有两个字母的二次三项式的因式分解,实际上可设二次三项式为零,把一个字母看成是未知数,其它看成已知数,求出方程的两个根,然后利用公式法将问题解决.本节课较上节课有一定的难度.通过本节课,进一步提高学生分析问题、解决问题的能力.上节课是本节课的基础,本节课是上节课的加深和巩固.一、新课引入:(1)如果x1,x2是方程ax2+bx+c=0的两个根,则ax2+bx+c如何因式分解?(2)将下列各式因式分解?①4x2+8x-1;②6x2-9x-21.二、新课讲解:例1把2x2-8xy+5y2分解因式.解:∵关于x的方程2x2-8xy+5y2=0的根是引导、板书,学生回答.注意以下两个问题:(1)把x看成未知数,其它看成已知数.(2)结果不能漏掉字母y.练习:在实数范围内分解下列各式.(1)6x2-11xy-7y;(2)3x2+4xy-y2.学生板书、笔答,评价.注意(1)可有两种方法,学生体会应选用较简单的方法.例2把(m2-m)x2-(2m2-1)x+m(m+1)分解因式.分析:此题有两种方法,方法(一)∵关于x的方程(m2-m)x2-(2m2-1)x+m(m+1)=0∴(m2-m)x2-(2m2-1)x+m(m+1)=[(m-1)x-m][mx-(m+1)]=(mx-x-m)(mx-m-1).方法(二)用十字相乘法.(m2-m)x2-(2m2-1)x+m(m+1)=m(m-1)x2-(2m2-1)x+m(m+1)=[(m-1)x-m][mx-(m+1)]=(mx-x-m)(mx-m-1).方法(二)比方法(一)简单.由此可以得出:遇见二次三项式的因式分解:(1)首先考虑能否提取公因式.(2)能否运用十字相乘法.(3)最后考虑用公式法.以上教师引导,学生板书、笔答,学生总结结论.练习:把下列各式因式分解:(1)(m2-m)x2-(2m2-1)x+m(m+1);(2)(x2+x)2-2x(x+1)-3.解:(1)(m2-m)x2-(2m2-1)x+m(m+1)=m(m-1)x2-(2m2-1)x+m(m+1)=[mx-(m+1)][(m-1)x-m]=(mx-m-1)[(m-1)x-m)].(因式分解法)(2)(x2+x)2-2x(x+1)-3…第一步=(x2+x-3)(x2+x+1)…第二步(1)题用十字相乘法较简单.(2)题第一步到第二步用十字相乘法,由第二步到第三步用公式法.注意以下几点:(1)因式分解一定进行到底.(2)当b2-4ac≥0时,ax2+bx+c在实数范围内可以分解.当b2-4ac<0时,ax2+bx+c在实数范围内不可分解.三、课堂小结:启发引导、小结本节课内容.1.遇见二次三项式因式分解.(1)首先考虑能否提取公因式.(2)其次考虑能否选用十字相乘法.(3)最后考虑公式法.2.通过本节课的学习,提高学生分析问题、解决问题的能力.3.注意以下几点;(1)在进行2x2-8xy+5y2分解因式时,千万不要漏掉字母y.(2)因式分解一定进行到不能再分解为止.(3)对二次三项式ax2+bx+c的因式分解,当b2-4ac≥0时,它在实数范围内可以分解;当b2-4ac<0时,ax2+bx+c在实数范围内不可以分解.四、作业:1.教材P.39中A2(8).2.教材P.39中B1.3.把下列各式分解因式:(1)(m2-m)x2-(2m2-1)x+m(m+1);(2)(x2+x)2-3x(x+1)-4.参考题目:一、选择题(20分)将下题中唯一正确答案的序号填在题后括号内在实数范围内把2x2+5xy-6y2分解因式的结果是A、2(x+y)(x+y)B、2(x-y)(x-y)C、(x-y)(x-y)D、2(x-)(x-)二、填空题(每题20分,共40分)1、在实数范围内把x2-5xy+3y2分解因式的结果是_________2、在实数范围内把2x2-4xy-5y2分解因式的结果是__________三、把下列各式在实数范围内分解因式(每题20分,共40分)1、-3x2-4xy+y22、2x2+7y(x-y)选作题(每题10分,共20分,不记入总分)把下列各式在实数范围内分解因式:1、(x2+x)2-2x(x+1)-82、3x2(x2-x+1)-2x2+2x-2教学后记: