电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

垂径定理说课稿VIP免费

垂径定理说课稿_第1页
1/4
垂径定理说课稿_第2页
2/4
垂径定理说课稿_第3页
3/4
《垂径定理》说课稿各位老师:大家好!今天我说课的内容是:冀教版九年级数学上册第28章第4节《垂径定理》。下面,我从教材分析、学情分析、教学设计、教学过程、板书设计、教学评价六个方面来阐述我对这节课设计、安排。一、教材分析●教材的地位和作用本节教材是在学生学习了圆的有关性质之后对垂直于弦的直径和这条弦的关系的进一步学习,垂径定理既是前面圆的性质的体现,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、垂直关系的重要依据,同时也是进行圆的计算和证明的一个重要工具。所以它在教材中处于非常重要的位置。因此,这节课无论在知识上,还是在对学生能力的培养及情感教育方面都起着十分重要的作用。●教学重点:1、掌握垂径定理内容2、会用垂径定理进行计算或简单的证明。●教学难点:1、区分垂径定理的题设和结论。2、应用垂径定理进行计算或简单的证明。二、学情分析教学对象是九年级学生,学生素质参差不齐;根据九年级学生的心理特点(追求效率、喜欢精简、喜欢快节奏)和已有的知识基础(已学过轴对称、中心对称、圆的基本概念),因此,在教学中采取的是从折纸开始,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,通过探索发现、夯实基础、更上一层楼和解决问题等环节发掘不同层次学生的不同能力,从而达到发展学生思维能力的目的。三、教材分析●知识目标:1、使学生理解圆是轴对称图形,直径所在的直线是它的对称轴。2、掌握垂径定理;3、学会运用垂径定理解决有关的证明、计算问题。●拓展知识目标能较熟练地运用弦、弧、直径之间的特定关系,解决有关问题。●能力目标:培养学生观察问题能力、分析问题能力及联想、解决问题能力。●情感目标:1、培养学生善于观察、勤于动手、乐于研究问题的习惯,激发学生的学习兴趣。2、通过赵州桥等例子,让学生领略古代能工巧匠的智慧。从而激发学生爱国热情,为实现伟大的中国梦而努力学习。四、教法分析:●教学方法:引导发现法和直观演示法。教学过程中,要关注学生的学习过程,结合本节课特点,选择“探究教学法”,借助“圆的特性”,充分展示定理内容的的变化过程.通过有色彩、古代的赵州桥等画面,提高学生学习数学的兴趣,激发学生主动参与教学活动,经过观察、分析、比较,共同获得新知,进而抓住重点,突破难点。●学法指导:本课主要采用探索问题——发现问题——分析问题——解决问题——总结问题的学习方法,引导学生通过观察——探索——归纳的推理方法,研究问题,获取新知。五、教学过程1、复习提问—创设情景(1)什么是轴对称图形?我们在平面图形中学过哪些轴对称图形?(如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形。如等腰三角形、矩形、菱形、等腰梯形、正方形。)(2)我们所学的圆是不是轴对称图形呢?2、引导新课—揭示课题①动手实验,把圆形纸片沿直径对折,观察两部分是否重合,得出结论:(1)圆是轴对称图形;(2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴;(3)圆的对称轴有无数条。教师演示课件——对折圆,以加深学生的直观印象。②在圆中作图:(1)任意作一条弦AB;(2)过圆心作AB的垂线得直径CD且交AB于M,那么CD是垂于弦的直径。探索:它除了上述性质外,是否还有其他性质呢?(板书课题:垂直于弦的直径)3、讲解新课—探求新知实验:将圆沿直径CD对折观察:图形重合部分猜想:线段相等、弧相等证明:轴对称、A与B重合(实验之后,教师展示课件——加深学生的印象。)结论:①CD是直径②CD⊥AB③AE=BE④AC=BC,⑤AD=BD这5个条件中,把前两个作为题设,其余3个作为结论,引导学生得出如下结论:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。这就是我们要学的内容,也叫做垂径定理它有三种语言:如图:文字语言:一条直线如果:(1)过圆心,(2)垂直于弦,那么这条直线:(a)平分弦,(b)平分弦所对的劣弧,(c)平分弦所对的优弧;符号语言:如果:(1)CD过圆心,(2)CD⊥AB于E,那么:...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

垂径定理说课稿

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部