第8章组合变形的强度计算8.1组合变形的概念在前面几章中,研究了构件在发生轴向拉伸(压缩)、剪切、扭转、弯曲等基本变形时的强度和刚度问题。在工程实际中,有很多构件在荷载作用下往往发生两种或两种以上的基本变形。若有其中一种变形是主要的,其余变形所引起的应力(或变形)很小,则构件可按主要的基本变形进行计算。若几种变形所对应的应力(或变形)属于同一数量级,则构件的变形为组合变形。例如,如图8.1(a)所示吊钩的AB段,在力P作用下,将同时产生拉伸与弯曲两种基本变形;机械中的齿轮传动轴(如图8.1(b)所示)在外力作用下,将同时发生扭转变形及在水平平面和垂直平面内的弯曲变形;斜屋架上的工字钢檀条(如图8.2(a)所示),可以作为简支梁来计算(如图8.2(b)所示),因为q的作用线并不通过工字截面的任一根形心主惯性轴(如图8.2(c)所示),贝忖起沿两个方向的平面弯曲,这种情况称为斜弯曲。t-v-.I:(图8.1吊钩及传动轴y图8.2斜屋架上的工字钢檀条求解组合变形问题的基本方法是叠加法,即首先将组合变形分解为几个基本变形,然180材料力学后分别考虑构件在每一种基本变形情况下的应力和变形。最后利用叠加原理,综合考虑各基本变形的组合情况,以确定构件的危险截面、危险点的位置及危险点的应力状态,并据此进行强度计算。实验证明,只要构件的刚度足够大,材料又服从胡克定律,则由上述叠加法所得的计算结果是足够精确的。反之,对于小刚度、大变形的构件,必须要考虑各基本变形之间的相互影响,例如大挠度的压弯杆,叠加原理就不能适用。下面分别讨论在工程中经常遇到的几种组合变形。8.2斜弯曲前面已经讨论了梁在平面弯曲时的应力和变形计算。在平面弯曲问题中,外力作用在截面的形心主轴与梁的轴线组成的纵向对称面内,梁的轴线变形后将变为一条平面曲线,且仍在外力作用面内。在工程实际中,有时会遇到外力不作用在形心主轴所在的纵向对称面内,如上节提到的屋面檀条的受力情况(如图8.2所示)。在这种情况下,杆件可考虑为在两相互垂直的纵向对称面内同时发生平面弯曲。实验及理论研究指出,此时梁的挠曲线不再在外力作用平面内,这种弯曲称为斜弯曲。现在以矩形截面悬臂梁为例(如图8.3(a)所示),分析斜弯曲时应力和变形的计算。这时梁在F1和F2作用下,分别在水平纵向对称面(Oxz平面)和铅垂纵向对称面(Oxy平面)内发生对称弯曲。在梁的任意横截面m—m上,由F]和F2引起的弯矩值依次为M=Fx,M=F(x一a)