专题二:函数的周期性和对称性【高考地位】函数的周期性和对称性是函数的两个基本性质。在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。【方法点评】一、函数的周期性求法使用情景:几类特殊函数类型解题模板:第一步合理利用已知函数关系并进行适当地变形;第二步准确求出函数的周期性;第三步运用函数的周期性求解实际问题.例1(1)函数)(xf对于任意实数x满足条件)(1)2(xfxf,若5)1(f,则))5((ff()A.5B.5C.51D.51【答案】D考点:函数的周期性.(2)已知xf在R上是奇函数,且满足xfxf5,当5,0x时,xxxf2,则2016f()A、-12B、-16C、-20D、0【答案】A试题分析:因为5fxfx,所以105fxfxfx,fx的周期为10,因此20164416412fff,故选A.考点:1、函数的奇偶性;2、函数的解析式及单调性.【点评】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法【变式演练1】已知定义在R上的函数()fx满足()()fxfx,(3)()fxfx,则(2019)f()A.3B.0C.1D.3【答案】B【变式演练2】定义在R上的函数fx满足20,0,2fxfxx时,31xfx,则2015f的值为()A.-2B.0C.2D.8【答案】A试题分析:由已知可得)()2()4(xfxfxffx的周期4T2015f)3(f2)1(f,故选A.考点:函数的周期性.【变式演练3】定义在R上的偶函数()yfx满足(2)()fxfx,且在[2,0]x上为增函数,3()2af,7()2bf,12(log8)cf,则下列不等式成立的是()A.abcB.bcaC.bacD.cab【答案】B试题分析:因为定义在R上的偶函数()yfx在[2,0]x上为增函数,所以在[0,2]x上单调递减,又(4)()fxfx,所以1271(),(log8)3122bffcfff,又13122,所以bca.考点:1.偶函数的性质;2.函数的周期性.二、函数的对称性问题使用情景:几类特殊函数类型解题模板:记住常见的几种对称结论:第一类函数)(xf满足()()fxafbx时,函数()yfx的图像关于直线2abx对称;第二类函数)(xf满足()()cfxafbx时,函数()yfx的图像关于点(,)22abc对称;第三类函数()yfxa的图像与函数()yfbx的图像关于直线2bax对称.例2.(从对称性思考)已知定义在R上的函数()fx满足()()fxfx,(3)()fxfx,则(2019)f()A.3B.0C.1D.3【答案】B【易错点晴】函数()fx满足),(-)-(xfxf则函数关于),(00中心对称,(3)()fxfx,则函数关于32x轴对称,常用结论:若在R上的函数()fx满足)()(),()(xbfxbfxafxaf,则函数)(xf以||4ba为周期.本题中,利用此结论可得周期为632-04,进而(2019)(3)ff,)3(f需要回到本题利用题干条件赋值即可.例3已知定义在R上的函数fx的图象关于点3,04对称,且满足32fxfx,又11,02ff,则123...2008ffff()A.669B.670C.2008D.1【答案】D试题分析:由32fxfx得3fxfx,又11,02ff,(1)(13)(2)fff,(0)(3)ff,fx的图象关于点3,04对称,所以1131()()(1),(1)(2)(3)0222fffffff,由3fxfx可得123...2008669(123)(1)(1)(1)1ffffffffff,故选D.考点:函数的周期性;函数的对称性.例4已知函数21()(,gxaxxeee为自然对数的底数)与()2lnhxx的图像上存在关于x轴对称的点,则实数a的取值范围是()A.21[1,2]eB.2[1,2]eC.221[2,2]ee...