电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第三章 概率 3.2.3 互斥事件课时作业(含解析)北师大版必修3-北师大版高一必修3数学试题VIP免费

高中数学 第三章 概率 3.2.3 互斥事件课时作业(含解析)北师大版必修3-北师大版高一必修3数学试题_第1页
1/4
高中数学 第三章 概率 3.2.3 互斥事件课时作业(含解析)北师大版必修3-北师大版高一必修3数学试题_第2页
2/4
高中数学 第三章 概率 3.2.3 互斥事件课时作业(含解析)北师大版必修3-北师大版高一必修3数学试题_第3页
3/4
课时作业20互斥事件时间:45分钟满分:100分——基础巩固类——一、选择题(每小题5分,共40分)1.事件A与B是对立事件,且P(A)=0.6,则P(B)等于(A)A.0.4B.0.5C.0.6D.1解析:P(B)=1-P(A)=1-0.6=0.4.2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是(C)A.“至少有1个白球”和“都是红球”B.“至少有1个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”解析:该试验有三种结果:“恰有1个白球”“恰有2个白球”“没有白球”,故“恰有1个白球”和“恰有2个白球”是互斥事件且不是对立事件.3.从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品至少有一件是次品},则下列结论正确的是(A)A.A与C互斥B.任何两个均互斥C.B与C互斥D.任何两个均不互斥解析: 从一批产品中取出三件产品包含4个基本事件.D1={没有次品},D2={1件次品},D3={2件次品},D4={3件次品},∴A=D1,B=D4,C=D2∪D3∪D4,故A与C互斥,A与B互斥,B与C不互斥.4.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为(D)A.60%B.30%C.10%D.50%解析:甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%.5.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是(C)A.①B.②④C.③D.①③解析:从1~9中任取两数,有以下三种情况:(1)两个均为奇数;(2)两个均为偶数;(3)一个奇数和一个偶数,故选C.6.甲袋中有大小相同的4只白球、2只黑球,乙袋中有大小相同的6只白球、5只黑球,现从两袋中各取一球,则两球颜色相同的概率是(D)A.B.C.D.解析:基本事件总数有6×11=66,而两球颜色相同包括两种情况:两白或两黑,其包含的基本事件有4×6+2×5=34(个),故两球颜色相同的概率P==.7.掷一枚骰子的试验中,出现各点的概率为.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+(表示事件B的对立事件)发生的概率为(C)A.B.C.D.解析:由题意知,表示“大于或等于5的点数出现”,事件A与事件互斥,由概率的加法计算公式可得P(A+)=P(A)+P()=+==.8.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于(A)A.B.C.D.解析:设事件A=“至少摸到2个黑球”,则它包含两种情况:“恰好摸到3个黑球”记为事件B和“恰好摸到2个黑球”记为事件C,很明显事件B、C互斥,又事件B中有1种结果,事件C中有×3×2×5=15种结果,而试验总共有8×7×6÷3÷2=56种结果,所以P(A)=P(B+C)=P(B)+P(C)=+==.本题也可用对立事件性质解答.二、填空题(每小题5分,共15分)9.某一时期内,一条河流某处的最高水位在各个范围内的概率如下:最高水位/m[8,10)[10,12)[12,14)概率0.20.30.5则在同一时期内,河流在这一处的最高水位不超过12m的概率为0.5.解析:法1:记“最高水位在[8,10)内”为事件A1,记“最高水位在[10,12)内”为事件A2,记“最高水位不超过12m”为事件A3,由题意知,事件A1,A2彼此互斥,而事件A3包含基本事件A1,A2,所以P(A3)=P(A1)+P(A2)=0.2+0.3=0.5.法2:记“最高水位在[12,14)内”为事件B1,记“最高水位不超过12m”为事件B2,由题意知,事件B1和B2互为对立事件,所以P(B2)=1-P(B1)=1-0.5=0.5.10.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为,那么所选3人中都是男生的概率为.解析:设A={3人中至少有1名女生},B={3人都为男生},则A,B为对立事件,所以P(B)=1-P(A)=.11.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为0.2.解析:由5根竹竿一次随机抽取2根竹竿的种数为4+3+2+1=10,它们的长度恰好相差0.3m的是2.5和2.8、2.6和...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第三章 概率 3.2.3 互斥事件课时作业(含解析)北师大版必修3-北师大版高一必修3数学试题

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部