3.4.1第1课时对数(建议用时:45分钟)[学业达标]一、选择题1.若x=y2(y>0,且y≠1),则必有()A.log2x=yB.log2y=xC.logxy=2D.logyx=2【解析】由x=y2得logyx=2.【答案】D2.若logx=z,则()A.y7=xzB.y=x7zC.y=7xzD.y=z7x【解析】由logx=z,得xz=,所以x7z=y.【答案】B3.若=9,则x=()A.3B.-3C.±3D.2【解析】由=x2=9,得x=±3.【答案】C4.计算:=()A.15B.51C.8D.27【答案】B5.已知loga2=m,loga3=n,则a2m+n等于()A.5B.7C.10D.12【解析】∵am=2,an=3,∴a2m+n=a2m·an=(am)2·an=12.故选D.【答案】D二、填空题6.方程log2(2x+1)=2的解为x=________.【解析】由log2(2x+1)=2,则2x+1=22=4,故x=.【答案】7.ln1+log(-1)(-1)=________.【解析】ln1+log(-1)(-1)=0+1=1.【答案】18.已知log7[log3(log2x)]=0,那么=__________.【解析】由题意得log3(log2x)=1,即log2x=3,转化为指数式则有x=23=8,∴===.【答案】三、解答题9.求下列各式中的x.(1)log2(log5x)=0;(2)logx27=.【解】(1)由log2(log5x)=0得log5x=1,∴x=5.(2)由logx27=得=27,∴x=,即x=,∴x=34=81.10.计算下列各式:[能力提升]1.若lga=5.21,lgb=3.21,则等于()A.10B.C.D.100【解析】由lga=5.21,lgb=3.21,得a=105.21,b=103.21,则==10-2=.【答案】C2.的值为()A.6B.C.8D.【解析】=-1·=2×4=8.故选C.【答案】C3.方程9x-6·3x-7=0的解是________.【解析】令t=3x,则t>0,则方程变为t2-6t-7=0,解得t=7或-1(舍去).则3x=7,得x=log37.【答案】log374.求下列对数的值:(1)lne2;(2);(3)log1.52.25;(4)lg;(5)log816;(6)ln(eln1).【解】(1)设lne2=x,则ex=e2,∴x=2,∴lne2=2.(2)设=x,则x=81=92,即9-x=92,∴x=-2,即=-2.(3)∵1.52=2.25,∴log1.52.25=2.(4)∵10-4=,∴lg=-4.(5)设log816=x,则8x=16,即23x=24,∴3x=4,即x=,∴log816=.(6)∵ln1=0,∴ln(e0)=ln1=0,∴lneln1=0.