课时分层作业(四十一)随机事件随机事件的运算(建议用时:40分钟)一、选择题1.下列事件中的随机事件为()A.若a,b,c都是实数,则a(bc)=(ab)cB.没有水和空气,人也可以生存下去C.抛掷一枚硬币,反面向上D.在标准大气压下,温度达到60℃时水沸腾C[A中的等式是实数乘法的结合律,对任意实数a,b,c是恒成立的,故A是必然事件.在没有空气和水的条件下,人是绝对不能生存下去的,故B是不可能事件.抛掷一枚硬币时,在没得到结果之前,并不知道会是正面向上还是反面向上,故C是随机事件.在标准大气压的条件下,只有温度达到100℃,水才会沸腾,当温度是60℃时,水是绝对不会沸腾的,故D是不可能事件.]2.12本外形相同的书中,有10本语文书,2本数学书,从中任意抽取3本,是必然事件的是()A.3本都是语文书B.至少有一本是数学书C.3本都是数学书D.至少有一本是语文书D[从10本语文书,2本数学书中任意抽取3本的结果有:3本语文书,2本语文书和1本数学书,1本语文书和2本数学书3种,故答案选D.]3.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品B[至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.]4.学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件C[由题意,1班和2班不可能同时分得黄色的奖牌,因而这两个事件是互斥事件;又1班和2班可能都得不到黄色的奖牌,故这两个事件不是对立事件,所以事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是互斥但不对立事件.故选C.]5.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是()A.A⊆DB.B∩D=∅C.A∪C=DD.A∪B=B∪DD[“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,∴A∪B≠B∪D.]二、填空题6.给出下列四个命题:①集合{x||x|<0}为空集是必然事件;②y=f(x)是奇函数,则f(0)=0是随机事件;③若loga(x-1)>0,则x>1是必然事件;④对顶角不相等是不可能事件.其中正确命题是________.①②③④[ |x|≥0恒成立,∴①正确;奇函数y=f(x)只有当x=0有意义时才有f(0)=0,∴②正确;由loga(x-1)>0知,当a>1时,x-1>1即x>2;当0<a<1时,0<x-1<1,即1<x<2,∴③正确,④正确.]7.同时抛掷两枚均匀的骰子,事件“都不是5点且不是6点”的对立事件为________.①一个是5点,另一个是6点;②一个是5点,另一个是4点;③至少有一个是5点或6点;④至多有一个是5点或6点.③[同时掷两枚骰子,可能出现的结果共有36个,“都不是5点且不是6点”包含16个,其对立事件是“至少有一个是5点或6点”.]8.盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球,2个白球},事件B={3个球中有2个红球,1个白球},事件C={3个球中至少有1个红球},设事件E={3个红球},那么事件C与A,B,E的运算关系是________.C=A∪B∪E[由题意可知C=A∪B∪E.]三、解答题9.从装有2个红球和2个白球(球除颜色外其他均相同)的口袋任取2个球,观察红球个数和白球个数,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)“至少有1个白球”与“都是白球”;(2)“至少有1个白球”与“至少有一个红球”;(3)“至少有一个白球”与“都是红球”.[解](1)不是互斥事件,因为“至少有1个白球”即“1个白球1个红球或两个白球”和“都是白球”可以同时发生,所以不是互斥事件.(2)不是互斥事件.因为“至少有1个白球”即“1个白球1个红球或2个白球”,“至少有1个红球”即“1个红球1个白球或2个红球”,两个事件可以同时发生,故不是互斥事件.(3)是互斥事件也是对立事件.因为“至少有1个白球”和“都是红球”...