3.4互斥事件1.下列说法中正确的是()A.事件A,B中至少有一个发生的概率一定比事件A,B中恰有一个发生的概率大B.事件A,B同时发生的概率一定比事件A,B中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件答案:D2.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列判断正确的是()A.A与C互斥B.B与C互斥C.A、B、C中任何两个都互斥D.A、B、C中任何两个均不互斥答案:B3.如果事件A,B互斥,那么________(填序号).①A+B是必然事件;②A+B是必然事件;③A与B一定是互斥事件;④A与B一定不是互斥事件.解析:结合韦恩图即得.答案:②4.抛掷一枚骰子,记A为事件“落地时向上的数是奇数”,B为事件“落地时向上的数是偶数”,C为事件“落地时间向上的数是3的倍数”.其中是互斥事件的是________,是对立事件的是________.答案:A,BA,B15.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.解析:甲队若要获得冠军,有两种情况,可以直接胜一局,获得冠军,概率为,也可以乙队先胜一局,甲队再胜一局,概率为×=,故甲队获得冠军的概率为+=.答案:D6.盒子中有大小、形状均相同的一些黑球、白球和黄球,从中摸出一个球,摸出黑球的概率为0.42,摸出黄球的概率为0.18,则摸出的球是白球的概率是________,摸出的球不是黄球的概率为________,摸出的球是黄球或者是黑球的概率为________.答案:0.40.820.67.先后抛掷3枚硬币,至少有一枚硬币背面朝下的概率是________.解析:利用对立事件概率公式求解.答案:8.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为________.解析:两个球的编号和不小于15,可能是7+8、8+8、8+7三种可能,基本事件共8×8=64种,∴概率为.答案:9.口袋中装有一些大小相同的红球、白球、黑球,从中摸出一个球,摸出红球的概率为0.42,摸出白球的概率为0.28,求摸出黑球的概率.解析:设“摸出红球”、“摸出白球”、“摸出黑球”分别为事件A、B、C,则A、B、C是两两互斥事件.P(C)=1-P(A)-P(B)=1-0.42-0.28=0.30.2即摸出黑球的概率为0.30.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:医生人数012345人及以上概率0.10.16xy0.2z(1)若派出医生不超过2人的概率为0.56,求x的值;(2)若派出医生最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.解析:(1)由派出医生不超过2人的概率为0.56,得0.1+0.16+x=0.56,∴x=0.3.(2)由派出医生最多4人的概率为0.96,得0.96+z=1,∴z=0.04.又由派出医生最少3人的概率为0.44,得y+0.2+0.04=0.44,∴y=0.2.11.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25,为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50.那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75,为什么?(3)两人各掷一枚硬币,“同时出现正面”的概率可以算得为.由于“不出现正面”是上述事件的对立事件,所以它的概率等于1-=.这样做对吗?说明道理.解析:(1)不能.因为甲命中目标与乙命中目标两事件不互斥;(2)能.因为命中靶的内圈和命中靶的其余部分是互斥事件;(3)不对.因为“不出现正面”与“同时出现正面”不是对立事件,故其概率和不为1.12.甲乙两人玩一种游戏,每次由甲、乙各出1至5根手指头,若和为偶数算甲赢,否则算乙赢.(1)若以A表示和为6的事件,求P(A).(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?3(3)这种游戏规则公平吗?试说明理由.解析:(1)基本事件空间与点集S{(x,y)|x∈N,y∈N,1≤x≤5,1≤y≤5}中的元素一一对应....