电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高一数学用二分法求方程的近似解VIP免费

高一数学用二分法求方程的近似解_第1页
高一数学用二分法求方程的近似解_第2页
高一数学用二分法求方程的近似解_第3页
用二分法求方程的近似解【教学目标】1.使学生理解利用二分法求方程的近似解的思想方法,会用二分法求某些方程的近似解2.通过本节内容的学习,让学生体会到在现实世界中,等是相对的,而不等是绝对的,这样可以加深对数学的理解.3.使学生进一步理解利用二分法求方程的近似解的思想方法,能灵活地使用二分法求某些方程的近似解4.通过本节内容的学习,进一步培养学生的运算能力,数形结合,化归转化分类讨论等意识.【学习指导】1.我们已经学过一元一次方程、一元二次方程等方程的解法,并掌握了一些方程的求根公式.实际上,大部分方程没有求根公式,那么,这些方程怎么解?学完这一课,你就会知道利用方程的根与函数的零点的关系求方程的实数解(近似解)了.本节的重点就是利用二分法求方程的近似解,所谓二分法就是:对于在区间[a,b]上连续不断、且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而和到零点近似值的方法.2.用二分法求函数f(x)零点的步骤是:第一步:确定区间[a,b],并验证f(a)·f(b)<0,同时给定精确度;第二步:求区间(a,b)的中点x1;第三步:计算f(x1);(1)若f(x1)=0,则x1就是函数的零点;(2)若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1));(3)若f(a)·f(x1)>0,则令a=x1(此时零点x0∈(x1,b)).第四步:判断是否达到精确度:即若|a-b|<,则得到零点近似值a或b;否则重复第二步~第四步.本节是通过一些例题的分析与解决进一步培养学生的运算能力,数形结合,化归转化等意识,以提高学生的数学涵养.难点是有些题目的计算比较烦,一定要让学生耐心去算.用心爱心专心【例题精析】例1.借助计算机或计算器,用二分法求函数f(x)=x3-5x2-4x+2的一个零点,精确到0.05.【分析】先用大范围法寻找零点所在的区间,然后不断使用二分法,逐步缩小区间,直至达到精度的要求.【解法】先作出x与f(x)的对应值表,并试图找出一个根所在的区间:x0123456f(x)2-6-18-28-30-1814通过举值,发现函数在(0,1)与(5,6)内都至少有一个零点,现不妨求(0,1)内的一个零点.令x1=0.5,f(0.5)=-1.125.因为f(0)·f(0.5)<0,所以零点x0∈(0,0.5).令x2=0.25,f(0.25)≈0.7.因为f(0.25)·f(0.5)<0,所以零点x0∈(0.25,0.5).令x3=0.375,f(0.375)≈-0.15.因为f(0.375)·f(0.25)<0,所以零点x0∈(0.25,0.375).令x4=0.3125,f(0.3125)≈0.29.因为f(0.375)·f(0.3125)<0,所以零点x0∈(0.3125,0.375).令x5=0.359375,f(0.359375)≈-0.04.因为f(0.359375)·f(0.3125)<0,所以零点x0∈(0.3125,0.359375).由于|0.359375-0.3125|=0.047<0.05,此时区间(0.3125,0.359375)的两个端点精确到0.05的近似值都是0.336,所以函数的一个零点为0.336.【评注】①选好初定区间是使用二分法求近似解的关键.选取初定区间的方法有多种,常用方法有试验估计法,数形结合法,函数单调性法,函数增长速度差异法等等.②本题还有两个零点,你能把它独立求解出来吗?(答案为-1,5.646.)例2.(师生共同探究)概括用二分法求方程的近似解的基本程序.【分析】通过对例1的研究,希望能够对解决问题的方法进行提炼,而这一点切不可以由老师包办代替,要通过师生的合作探究解决问题.【解法】(1)在同一坐标系中分别作出两个简单函数的图象,注意两个图象与x轴的交点坐标;(2)估算出第一个解的区间(x1,x2),(x1<x2);用心爱心专心(3)计算f()的值,若f()<0,则第二个解区间为(,x2);若f()>0,则第二个解区间为(x1,);若f()=0,则近似解为x=;(4)重复第(3)步的操作,直至给出的解区间(xi,yi)满足精确度要求为止;(5)写出原方程的近似解.【评注】利用二分法求方程的实数解的过程亦可以用下图表示.例3.利用计算器,求方程的近似解(精确到0.1).【分析】作一张草图,找好解所在的大致区间.【解法】分别画出函数和的图象,在两个函数图象的交点处,函数值相等.因此,这个点的横坐标就是方程的解,由图象可以发现,方程有唯一解,并且这个解在区间(2,3)内...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部