.相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型匀加速追匀速图象说明①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx匀速追匀减速③t=t0以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这教育资料.匀速追匀加速也是避免相撞的临界条件②若Δxx0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题教育资料.相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系.(2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系.(3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A、B同时从同一地点,沿同一方向运动,A以10m/s的速度匀速前进,B以2m/s的加速度从静止开始做匀加速直线运动,求A、B再次相遇前两物体间的最大距离.【解析一】物理分析法A做υA=10m/s的匀速直线运动,B做初速度为零、加速度a=2m/s的匀加速直线运动.根据题意,开始一小段时间内,A的速度大于B的速度,它们间的距离逐渐变大,当B的速度加速到大于A的速度后,它们间的距离又逐渐变小;A、B间距离有最大值的临界条件是υA=υB.①设两物体经历时间t相距最远,则υA=at②把已知数据代入①②两式联立得t=5s在时间t内,A、B两物体前进的距离分别为sA=υAt=10×5m=50m1212sB=at=×2×5m=25m22A、B再次相遇前两物体间的最大距离为Δsm=sA-sB=50m-25m=25m【解析二】相对运动法因为本题求解的是A、B间的最大距离,所以可利用相对运动求解.选B为参考系,则A相对B的初速度、末速度、加速度分别是υ0=10m/s、υt=υA-υB=0、a=-2m/s.根据υt-υ0=2as.有0-10=2×(-2)×sAB解得A、B间的最大距离为sAB=25m.【解析三】极值法12125物体A、B的位移随时间变化规律分别是sA=10t,sB=at=×2×t=t.22则A、B间的距离Δs=10t-t,可见,Δs有最大值,且最大值为24×(-1)×0-10Δsm=m=25m4×(-1)【解析四】图象法根据题意作出A、B两物体的υ-t图象,如图1-5-1所示.由图可知,A、B再次相遇前它们之间距离有最大值的临界条件是υA=υB,得t1=5s.A、B间距离的最大值数值上等于ΔOυAP的面积,即1Δsm=×5×10m=25m.2【答案】25m【点拨】相遇问题的常用方法教育资料222222.(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系....