1.2因动点产生的等腰三角形问题例12012年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线.思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3),代入点C(0,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.设抛物线的对称轴与x轴的交点为H.由BHPHBOCO,BO=CO,得PH=BH=2.1所以点P的坐标为(1,2).图2(3)点M的坐标为(1,1)、(1,6)、(1,6)或(1,0).考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1,1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6m.此时点M的坐标为(1,6)或(1,6).③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1,6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3图4图5例22012年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.2(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12临沂26”,拖动点P在抛物线的对称轴上运动,可以体验到,⊙O和⊙B以及OB的垂直平分线与抛物线的对称轴有一个共同的交点,当点P运动到⊙O与对称轴的另一个交点时,B、O、P三点共线.请打开超级画板文件名“12临沂26”,拖动点P,发现存在点P,使得以点P、O、B为顶点的三角形是等腰三角形思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.满分解答(1)如图2,过点B作BC⊥y轴,垂足为C.在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,23OC.所以点B的坐标为(2,23).(2)因为抛物线与x轴交于O、A(4,0),设抛物线的解析式为y=ax(x-4),代入点B(2,23),232(6)a.解得36a.所以抛物线的解析式为23323(4)663yxxxx.3(3)抛物线的对称轴是直线x=2,设点P的坐标为(2,y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得23y.当P在(2,23)时,B、O、P三点共线(如图2).②当BP=BO=4时,BP2=16.所以224(23)16y.解得1223yy.③当PB=PO时,PB2=PO2.所以22224(23)2yy.解得23y.综合①、②、③,点P的坐标为(2,23),如图2所示.图2图3考点伸展如图3,在本题中,设抛物线的顶点为D,那么△DOA与△OAB是两个相似的等腰三角形.由23323(4)(2)663yxxx,得抛物线的顶点为23(2,)3D.因此23tan3DOA.所以∠DOA=30°,∠ODA=120°.例32011年湖州市中考第24题如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除...