电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题5 函数、导数、不等式的综合问题》训练5 新人教版VIP免费

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题5 函数、导数、不等式的综合问题》训练5 新人教版_第1页
1/3
【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题5 函数、导数、不等式的综合问题》训练5 新人教版_第2页
2/3
【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题5 函数、导数、不等式的综合问题》训练5 新人教版_第3页
3/3
训练5函数、导数、不等式的综合问题(时间:45分钟满分:75分)一、选择题(每小题5分,共25分)1.(2011·烟台模拟)已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图所示,则f(x)的图象可能是().2.(2011·湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为().A.1B.C.D.3.已知函数f(x)=x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,则实数m的取值范围是().A.B.C.D.4.(2011·泉州模拟)已知函数f(x)=-x2+4x-3lnx在[t,t+1]上不单调,则t的取值范围是().A.(0,1)∪(2,3)B.(0,2)C.(0,3)D.(0,1]∪[2,3)5.设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则().A.a>-3B.a<-3C.a>-D.a<-二、填空题(每小题5分,共15分)6.(2012·衡阳模拟)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于________.7.某名牌电动自行车的耗电量y与速度x之间有如下关系:y=x3-x2-40x(x>0),为使耗电量最小,则速度应定为________.8.(2012·温州模拟)关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________.三、解答题(本题共3小题,共35分)9.(11分)已知函数f(x)=x3-x2+bx+a.(a,b∈R)的导函数f′(x)的图象过原点.1(1)当a=1时,求函数f(x)的图象在x=3处的切线方程;(2)若存在x<0,使得f′(x)=-9,求a的最大值.10.(12分)(2011·洛阳模拟)已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0]与[1,+∞)上是减函数,且f′=.(1)求f(x)的解析式;(2)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.11.(12分)(2011·福建)已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).(1)求实数b的值;(2)求函数f(x)的单调区间;(3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.参考答案1.D[由导数与函数的单调性可得:当x<0时,由导函数f′(x)=ax2+bx+c<0,知相应的函数f(x)在该区间上单调递减;当x>0时,由导函数f′(x)=ax2+bx+c的图象可知,导数在部分区间内的值是大于0的,且在此区间内函数f(x)单调递增.只有D选项满足题意.]2.D[|MN|的最小值,即函数h(x)=x2-lnx的最小值,h′(x)=2x-=,显然x=是函数h(x)在其定义域内唯一的极小值点,也是最小值点,故t=.]3.A[因为函数f(x)=x4-2x3+3m,所以f′(x)=2x3-6x2,令f′(x)=0,得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为f(3)=3m-,不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,所以3m-≥-9,解得m≥.]4.A[f′(x)=-x+4-==-,由f′(x)=0得函数的两个极值点1,3,则只要这两个极值点在区间(t,t+1)内,函数在区间[t,t+1]上就不单调,由t<1<t+1或t<3<t+1,解得0<t<1或2<t<3.]5.B[令f(x)=eax+3x,可求得f′(x)=3+aeax,若函数在x∈R上有大于零的极值点,即f′(x)=3+aeax=0有正根.当f′(x)=3+aeax=0成立时,显然有a<0,此时x=ln.由x>0,解得a<-3,∴a的取值范围为(-∞,-3).]6.解析由题得f′(x)=12x2-2ax-2b=0,∴f′(1)=12-2a-2b=0,∴a+b=6.∴a+b≥2,∴6≥2,∴ab≤9,当且仅当a=b=3时取到最大值.答案97.解析 y′=x2-39x-40,令y′=0.即x2-39x-40=0,解得x=40或x′=-1(舍).当x>40时,y′>0.当0<x<40时,y′<0,所以当x=40时,y最小.答案408.解析由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0得,x1=0,x2=2,当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以,解得-4<a<0.2答案(-4,0)9.解由已知,得f′(x)=x2-(a+1)x+b.由f′(0)=0,得b=0,f′(x)=x(x-a-1).(1)当a=1时,f(x)=x3-x2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【拿高分,选好题第二波】(新课程)高中数学二轮复习精选《必考问题5 函数、导数、不等式的综合问题》训练5 新人教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部