本次课内容随机过程的特征估计随机过程的联合分布与互相关函数随机过程的功率谱6.各态历经随机过程(Ergodicrandomprocess)(1)随机过程的遍历性(Ergodic)定义:对于平稳随机过程X(t),若有XPXmm均值遍历性)()(XPXRR相关函数遍历性则X(t)为遍历过程。TTTXdttXTmilm)(21TTTXdttXtXTmilR)()(21)(TimeaverageTimeACF各态历经性的解释:TTTXdttXTmilm)(211()()()2TXTTRlimXtXtdtT对于遍历过程,由一条样本函数可确定过程的均值CheckYourselfConsidertheprocessX(t)=A,whereAisarandomvariablewithzeromeanandvariance2.Whichoffollowingiscorrect?X(t)isawssRPandergodicRPX(t)isasssRPandergodicRPX(t)isasssRPandisnotaergodicRPX(t)isnotasssRP.butitisaergodicRPNoneofallA.B.C.D.E.CheckYourselfConsidertheprocessX(t)=A,whereAisarandomvariablewithzeromeanandvariance2.Whichoffollowingiscorrect?X(t)isawssRPandergodicRPX(t)isasssRPandergodicRPX(t)isasssRPandisnotaergodicRPX(t)isnotasssRP.butitisaergodicRPNoneofallA.B.C.D.E.解、[()][]EXtEA2[()()][]EXtXtEA平稳随机过程1()lim2TTTxtadtaT不是各态历经过程(2)均值和自相关函数估计对各态历经过程,可以通过对一条样本函数的观测,就可以估计出随机过程均值、方差和相关函数。TTXdttxTm)(21ˆTTXdttxtxTR)()(21)(ˆ连续随机过程:101ˆ()NXnmxnN12201ˆˆ()1NXXnxnmN101ˆ()()()NmXnRmxnxnmNm随机序列:(3)分布函数遍历性(){()}XFxPXtx1()()0()XtxYtXtx[()]1[()]()XEYtPXtxFxX(t)分布函数的遍历性等效于Y(t)的均值遍历性1ˆ()()()22iTiXTtFxYtYtdtTTit是X(t)x的时间间隔x1t2t3t()xt123.......(())()2PxxtxxfxxTxxx123()xt()fxEstimationofPDFxxx123t()xt()fx2.4随机过程的联合分布与互相关函数•联合分布函数与联合概率密度•互相关函数及其性质•举例1.联合分布函数和联合概率密度Jointdistributionfunctionandjoinprobabilitydensities),,,,,,,,,,(''1111mmnnXYttyyttxxF})(,,)(,)(,,)({'1'111mmnnytYytYxtXxtXPn+m维联合分布函数:),,,,,,,,,,(''1111mmnnXYttyyttxxfmnmmnnXYmnyyxxttyyttxxF11''1111),,,,,,,,,,(n+m维联合概率密度:平稳相依:如果X(t)与Y(t)的联合统计特性不随时间起点的平移而变化,则称X(t)与Y(t)是严格联合平稳的(jointstrictsensestationary)。即),,,,,,,,,,(''1111mmnnXYttyyttxxf),,,,,,,,,,(''1111ctctyyctctxxfmmnnXY2.互相关(Crosscorrelation)函数及性质dxdyttyxxyftYtXEttRXYXY),,,()}()({),(212121互协方差(Crosscovariance)函数)]}()()][()({[),(221121tmtYtmtXEttKYXXY)()(),(2121tmtmttRYXXY若,则X(t)与Y(t)正交;若,则X(t)与Y(t)不相关;0),(21ttRXY0),(21ttKXY则称X(t)与Y(t)广义联合平稳(jointlywidesensestationary)XXmtm)(YYmtm)(2121),(),(ttRttRXYXY如果)()(YXXYRR)()(YXXYKK互相关函数的性质:若X(t)与Y(t)是联合平稳的,则Z(t)=X(t)+Y(t)是平稳过程,且)()()()()(YXXYYXZRRRRR)0()0()(2YXXYRRR)0()0()(2YXXYRRR222)(YXXYK)0()0()(2YXXYKKK3、互相关系数YXYXXYYXXYXYmmRKKKr)()0()0()()(又称归一化互协方差函数或标准互协方差函数例2.14设解、)sin()(0ttX)cos()(0ttY001{()}{sin()}sin()02EXtEttd001{()}{cos()}cos()02EYtEttdYXXYXYmmttRttK),(),(2121)}(sin)2{sin(212102010ttttE0sin2121tt其中0为常数,在(0,2...