【数学精品】版《6年高考4年模拟》第十二章概率与统计第一部分六年高考荟萃年高考题1.(辽宁理)在长为12cm的线段AB上任取一点C.现作一矩形,领边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.16B.13C.23D.45【答案】C【解析】设线段AC的长为xcm,则线段CB的长为(12x)cm,那么矩形的面积为(12)xxcm2,由(12)32xx,解得48xx或.又012x,所以该矩形面积小于32cm2的概率为23,故选C【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题.2.(湖北理)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.21πB.112πC.2πD.1π考点分析:本题考察几何概型及平面图形面积求法.解析:令1OA,扇形OAB为对称图形,ACBD围成面积为1S,围成OC为2S,作对称轴OD,则过C点.2S即为以OA为直径的半圆面积减去三角形OAC的面积,82212121212122S.在扇形OAD中21S为扇形面积减去三角形OAC面积和22S,1622811812221SS,4221SS,扇形OAB面积41S,选A.3.(广东理)(概率)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.解析:D.两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,个位数为0的有5个,所以概率为.4.(北京理)设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【答案】D【解析】题目中表示的区域表示正方形区域,而动点可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此,故选D【考点定位】本小题是一道综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式、概率.5.(上海理)设,.随机变量取值、、、、的概率均为0.2,随机变量取值、、、、的概率也为0.2.若记、分别为、的方差,则()A.>.B.=.C.<.D.与的大小关系与、、、的取值有关.[解析]=t,++++)=t,++++];记,,,,同理得,只要比较与有大小,,所以,选A.[评注]本题的数据范围够阴的,似乎为了与选项D匹配,若为此范围面困惑,那就中了阴招!稍加计算,考生会发现和相等,其中的智者,更会发现第二组数据是第一组数据的两两平均值,“”“”故比第一组更集中、更稳定,根据方差的涵义,立得>而迅即攻下此题.6.(上海理)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是______(结果用最简分数表示).[解析]设概率p=,则,求k,分三步:①选二人,让他们选择的项目相同,有种;②确定上述二人所选择的相同的项目,有种;③确定另一人所选的项目,有种.所以,故p=.7.(上海春)某校要从名男生和名女生中选出人担任某游泳赛事的志愿者工作,则在选出的志愿者中,男、女都有的概率为______(结果用数值表示).8.(江苏)现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是____.【答案】.【考点】等比数列,概率.【解析】 以1为首项,为公比的等比数列的10个数为1,-3,9,-27,···其中有5个负数,1个正数1计6个数小于8,∴从这10个数中随机抽取一个数,它小于8的概率是.9.(新课标理)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为_________【解析】使用寿命超过1000小时的概率为三个电子元件的使用寿命均服从正态分布得:三个电子元件的使用寿命超过1000小时的概率为超过1000小时时元件1或元件2正常工作的概率元件1元件2元件3元件1元件2元件3那么该部件的使用寿命超过1000小时的概率为10.(天津理)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)...