1/520XX-20XX全国高中数学联赛分类汇编第09讲:立体几何1、(20XX一试7)正三棱柱111CBAABC的9条棱长都相等,P是1CC的中点,二面角11BPAB,则sin【答案】104【解析】OEPC1B1A1CBA设分别与平面PBA1、平面PAB11垂直的向量是),,(111zyxm、),,(222zyxn,则,03,022111111zyxBPmzxBAm,03,022221211zyxPBnxABn由此可设)3,1,0(),1,0,1(nm,所以cosmnmn,即6322coscos4.所以410sin.解法二:如图,PBPAPCPC11,.2/5设BA1与1AB交于点,O则1111,,OAOBOAOBABAB.11,,PAPBPOAB因为所以从而1AB平面BPA1.过O在平面BPA1上作PAOE1,垂足为E.连结EB1,则EOB1为二面角11BPAB的平面角.设21AA,则易求得3,2,5111POOBOAPAPB.在直角OPA1中,OEPAPOOA11,即56,532OEOE.221116452,255BOBEBOOE又.4105542sinsin111EBOBEOB.2、(20XX一试6)在四面体ABCD中,已知60CDABDCADB,3BDAD,2CD,则四面体ABCD的外接球的半径为【答案】3【解析】因为60ADBCDBCDA,设CD与平面ABD所成角为,可求得32sin,31cos.在△DMN中,33233232,121DPDNCDDM.学科*网由余弦定理得231312)3(1222MN,3/5故2MN.四边形DMON的外接圆的直径3322sinMNOD.故球O的半径3R.3、(20XX一试5)设同底的两个正三棱锥PABC和QABC内接于同一个球.若正三棱锥PABC的侧面与底面所成的角为45,则正三棱锥QABC的侧面与底面所成角的正切值是.矚慫润厲钐瘗睞枥庑赖。矚慫润厲钐瘗睞枥庑赖賃。【答案】4【解析】,从而12PHMHAH,因为90,,PAQAHPQ所以2,APPHQH即21.2AHAHQH所以24.QHAHMH,故tan4QHQMHMH4、(20XX一试4)已知正三棱锥PABC底面边长为1,高为2,则其内切球半径为.【答案】26【解析】BCHMAOKP如图,设球心O在面ABC与面ABP内的射影分别为H和K,AB中点为M,内切球半径为r,则PKM、、共线,POH、、共线,2PHMPKO,且OHOKr,4/52POPHOHr,3366MHAB,221532126PMMHPH,于是有1sin52rOKMHKPOPOPMr,解得26r.5、(20XX一试5)已知正四棱锥ABCDP中,侧面是边长为1的正三角形,NM,分别是边BCAB,的中点,则异面直线MN与PC之间的距离是_____________.聞創沟燴鐺險爱氇谴净。聞創沟燴鐺險爱氇谴净祸。【答案】246、(20XX一试5)设P为一圆锥的顶点,A,B,C是其底面圆周上的三点,满足ABC=90°,M为AP的中点.若AB=1,AC=2,2AP,则二面角M—BC—A的大小为.残骛楼諍锩瀨濟溆塹籟。残骛楼諍锩瀨濟溆塹籟婭。【答案】32arctan【解析】由ABC=90°知,AC为底面圆的直径.设底面中心为O,则PO平面ABC,易知121ACAO,进而122AOAPPO.