电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课程)高中数学《2.2.1综合法和分析法》教案 新人教A版选修1-2VIP免费

(新课程)高中数学《2.2.1综合法和分析法》教案 新人教A版选修1-2_第1页
1/1
2.2.1综合法和分析法(一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程:一、复习准备:1.已知“若,且,则”,试请此结论推广猜想.(答案:若,且,则)2.已知,,求证:.先完成证明→讨论:证明过程有什么特点?二、讲授新课:1.教学例题:①出示例1:已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.分析:运用什么知识来解决?(基本不等式)→板演证明过程(注意等号的处理)→讨论:证明形式的特点②提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示:要点:顺推证法;由因导果.③练习:已知a,b,c是全不相等的正实数,求证.④出示例2:在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列.求证:为△ABC等边三角形.分析:从哪些已知,可以得到什么结论?如何转化三角形中边角关系?→板演证明过程→讨论:证明过程的特点.→小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2.练习:①为锐角,且,求证:.(提示:算)②已知求证:3.小结:综合法是从已知的P出发,得到一系列的结论,直到最后的结论是Q.运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1.求证:对于任意角θ,.(教材P52练习1题)(两人板演→订正→小结:运用三角公式进行三角变换、思维过程)2.的三个内角成等差数列,求证:.3.作业:教材P54A组1题.1

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课程)高中数学《2.2.1综合法和分析法》教案 新人教A版选修1-2

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部