高二数学选修4-5不等式的证明方法之四:放缩法与贝努利不等式目的要求:重点难点:教学过程:一、引入:所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法。这种方法是证明不等式中的常用方法,尤其在今后学习高等数学时用处更为广泛。下面我们通过一些简单例证体会这种方法的基本思想。二、典型例题:例1、若是自然数,求证证明:==注意:实际上,我们在证明的过程中,已经得到一个更强的结论,这恰恰在一定程度上体现了放缩法的基本思想。例2、求证:证明:由(是大于2的自然数)得用心爱心专心115号编辑例3、若a,b,c,dR+,求证:证:记m= a,b,c,dR+∴∴12时,求证:证: n>2∴∴∴n>2时,三、小结:四、练习:1、设为大于1的自然数,求证用心爱心专心115号编辑2、设为自然数,求证五、作业:A组1、对于任何实数,求证:(1);(2)2、设,求证:(1);(2)3、证明不等式.4、若都是正数,求证:5、若求证6、如果同号,且均不为0.求证:,并指出等号成立的条件.7、设是互不相等的正数,求证:8、已知三个正数的和是1,求证这三个正数的倒数的和必不小于9.9、若,则.10、设,且求证:11、已知,求证:(1);(2).12、设是互不相等的正数,求证:13、已知都是正数,求证:(1)(2)14、已知求证:15、已知求证:16、已知都是正数,且有求证:用心爱心专心115号编辑17、已知都是正数,且,求证:18、设的三条边为求证.19、已知都是正数,设求证:20、设是自然数,利用放缩法证明不等式21、若是大于1的自然数,试证B组22、已知都是正数,且求证:23、设,试用反证法证明不能介于与之间。24、若是自然数,求证链接:放缩法与贝努利不等式在用放缩法证明不等式时,有时需要“舍掉几个正项”以便达到目的。就是说,如果在和式里都是正数,可以舍掉,从而得到一个明显成立的不等式.例如,对于任何和任何正整数,由牛顿二项式定理可得舍掉等式右边第三项及其以后的各项,可以得到不等式:.在后面章节的学习中,我们将会用数学归纳法证明这一不等式的正确性。该不等式不仅当是正整数的时候成立,而且当是任何大于1的有理数的时候也成立。这就是著名的贝努利不等式。在今后的学习中,可以利用微积分证明更一般的贝努利不等式:设,则在或时,,在时,用心爱心专心115号编辑阅读材料:贝努利家族小史在数学发展史上,17-18世纪出现了一个著名的数学世家——贝努利(Bernoulli)家族(瑞士),这个家族中的三代人中共出现了8位数学家,它们几乎对当时数学的各个分支都做出了杰出的贡献。其中,又以第一代的雅各布•贝努利(JacobBernoulli,1654.12-1705.8)、约翰•贝努利(JohannBernoulli,1667.8-1748.1)兄弟和第二代的丹尼尔•贝努利(DanialBernoulli,1700.2-1782.3,约翰•贝努利的儿子)最为著名。在数学的多个分支中,以“贝努利”命名的定义、定理、公式数不胜数。除了我们前面提到的“贝努利不等式”之外,将来会有机会学习到微积分中的“贝努利方程”、“贝努利级数判别法”,解析几何中的“贝努利双纽线”,概率论中的“贝努利定理”(即“大数定律”的早期形式)、“贝努利数”、“贝努利多项式”等等。特别是,丹尼尔•贝努利创造性地将数学方法应用到物理学的研究中,取得了卓著的成就,被推崇为数学物理方法的奠基人。贝努利家族之所以取得如此大的数学成就,至少有以下几个方面的主要原因:(1)对数学的真挚热爱。考察贝努利家族的8位数学家,可以发现一个共同的特点:都是从父辈不同意他们研究数学,而要求他们经商、从医或做律师开始,到最终走上从事数学的生涯。这一过程中,个人对数学的极大热情和兴趣起到了决定性的作用。当然,家族的数学传统和学习精神的影响也是不容忽视的重要因素。(2)广泛的学术交流。贝努利家族的成员们,都注重与当时的数学家和科学家进行广泛的学术交流和争辩,以此互相促进和提高。如雅各布•贝努利、约翰•贝努利与他们那个时代的大数学家、微积分的创始人莱布尼茨之间,丹尼尔•贝努利与当时欧洲数...