6.5含有绝对值的不等式(二)教学要求:能熟练运用绝对值不等式的两条定理,掌握绝对值不等式的解法。教学重点:熟练运用定理。教学过程:一、复习准备:1.求证:|x|-|y|≤|x-y|≤|x|+|y|2.解不等式:|x-2x-8|>53.已知|x-a|<,|y-b|<,|z-c|<,求证:|(x+y-z)-(a+b-c)|<ε4.知识回顾:绝对值不等式定理、绝对值不等式解法(变形式)二、讲授新课:1.教学例题:①出示例:已知|x|<1,|y|<1,求证:||<1②分析:Ⅰ.是否可以直接利用绝对值基本不等式?Ⅱ.||≤不对吗?Ⅲ.用什么方法去绝对值符号,化简不等式?(平方法)③试练→小结:用平方法化为等价的不含绝对值不等式;注意书写格式④讨论其他证法。(变形为-1<<1)⑤练习:设|a|<1,|b|<1,求证:|a+b|+|a-b|<2解法一:两次平方去绝对值,再分a≥b、a0②解不等式:|2x-5|-|x+1|<23.小结:用心爱心专心含绝对值的不等式问题,可运用基本不等式;用平方法去绝对值;也可分区间讨论(零点讨论)。三、巩固练习:1.已知|a|