电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学第二册(上)抛物线的几何性质(二)VIP免费

高中数学第二册(上)抛物线的几何性质(二)_第1页
1/2
高中数学第二册(上)抛物线的几何性质(二)_第2页
2/2
抛物线的几何性质(二)●教学目标1.灵活应用抛物线性质确定抛物线标准方程;2.应用抛物线性质解决生产实际问题;3.提高综合解题能力.●教学重点抛物线定义,性质应用●教学难点解题思路分析●教学方法启发式●教具准备三角板●教学过程Ⅰ.复习回顾师:上一节,我们一起学习了抛物线四种标准方程对应的几何性质,现在作一简要的回顾(学生回答略)这一节,我们将组织研究抛物线的标准方程及其几何性质的应用.Ⅱ.讲授新课例2.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点的位置.分析:此题是根据已知条件求抛物线的标准方程,关键是选择建立恰当的坐标系,并由此使学生进一步认识坐标法.解:如图8—25,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径.设抛物线的标准方程是.由已知条件可得点A的坐标是(40,30),代入方程得:所以所求抛物线的标准方程是,焦点坐标是(,0).说明:此题在建立坐标系后,要求学生能够根据抛物线的图形确定抛物线标准方程的类型,再求出方程中的参数p.师:为使大家进一步掌握坐标法,我们来看下面的例3:例3.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求这个正三角形的边长.分析:观察图8—26,正三角形及抛物线都是轴对称图形,如果能证明x轴是它们的公共的对称轴,则容易求出三角形的边长.解:如图8—26,设正三角形OAB的顶点A、B在抛物线上,且坐标分别为,则:,所以.用心爱心专心115号编辑由此可得,,即线段AB关于x轴对称,因为x轴垂直于AB,且∠Aox=30°,所以.说明:这个题目对学生来说,求边长不困难,但是他们往往直观上承认抛物线与三角形的对称轴是公共的,而忽略了它的证明.教学时,要提醒学生注意这一点,通过这一例题,可以帮助学生进一步掌握坐标法.Ⅲ.课堂练习课本P1233,4.●课堂小结师:通过本节学习,要求大家掌握求解抛物线标准方程的方法,进一步掌握坐标法的应用,并了解抛物线知识在生产生活实际中的应用.●课后作业习题8.63,4,6.●板书设计§8.6.2例2……例3……练习1……练习2………………………………………………●教学后记用心爱心专心115号编辑

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学第二册(上)抛物线的几何性质(二)

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部