数列奥赛竞赛练兵一、选择题1.(2000年全国高中数学联赛)给定正数p,q,a,b,c,其中p≠q。若p,a,q是等比数列,p,b,c,q是等差数列,则一元二次方程022caxbx()A.无实根B.有两个相等实根C.有两个同号相异实根D.有两个异号实根二、填空题2.(2000年全国高中数学联赛)等比数列3log2a,3log4a,3log8a的公比是_________。三、解答题3.(2000年全国高中数学联赛)设nSn21,n∈N。求1)32()(nnSnSnf的最大值。4.(第五届北京高中数学知识应用竞赛)PC505型文曲星具有选定一组或多组英文单词,根据科学记忆曲线在十四天内进行初记和强化复习的功能。对于每一组单词(词量自定),初记完成后,文曲星提示“立即复习一遍”,然后在第二、第四天、第七天、第九天、第十天、第十四天,“每天复习一遍”该组单词,其他天无须复习,当你在这十四天内,按时正确地拼写这组单词后,文曲星就不再提示对该组单词的记忆。高中《英语》第一册(下)生词表中,UNIT17~UNIT20共99个单词,请你将这99个单词适当分组,利用文曲星的强化复习功能,制定一个在20天内记忆99个单词的计划,把每天需要初记的单词数和每天需要初记和复习的单词总数填入下表中,使得每天初记和复习的单词总数不少于10个,且不多于50个。用心爱心专心15.(第十一届美国数学邀请赛(AIME)试题第九题)在一圆周上给定2000个点,取其中一点标记上数1,从这点开始按顺时针方向到第二个点标记上数2,从标记上2的点开始按顺时针方向数到第三个点标记上数3(如图3-3),继续这个过程直到1,2,3,…,1993都被标记到点上,圆周上这些点中有些会标记上不止一个数,也有一些点未标记上任何数,在标上1993的那一点上所有标数中最小的数是什么?6.(第五届北京高中数学知识应用竞赛)电子器件厂兼营生产和销售某种电子器件,流水线启动后每天生产p=500个产品,可销售q=400个产品,未售出的产品存入库房,每件产品在库房内每过一夜将支付存储费用r=0.2元。该流水线在开机生产一段时间后将停机销售,待所有库存产品销完再开机生产,流水线启动的费用是c=1000元(与产品数量无关)。这样,开机生产——停机销售——产品售完构成了一个产销周期。为管理方便,流水线的生产和停机的时间均以天为单位安排。请你设计一个产销周期,即开机生产多少天,停机销售多少天,使得平均每件产品用于流水线启动和存储的费用最少?参考答案1.A由题意知2apq,2b=p+c,2c=q+b,由后二式得32qpb,32qpc。于是有23232)(31)(31apqqppqqppqqpbc。因为p≠q,故2abc,用心爱心专心2方程的判别式0442bca。因此方程无实根。故选A。2.31设公比为q,由已知条件知,3log3log3log3log4824aaaaq,由比例性质,313log213log3log313log213log3log3log3log)3log(3log)3log(3log222242844284aaaaq。3.解:由已知,对任何n∈N,有)2)(32()32()(1nnnSnSnfnn3464164342nnnnn,又因50346423464nnnn,故对任意x∈N,有50134641)(nnnf。由于501)8(f,故f(n)的最大值为501。4.解:制定方案的原则可以是:第一条:为了能在20天内完成99个单词的复习任务,最后一组初记单词最晚在第7天输入;设第i天初记的单词量为ia,则有下表用心爱心专心3第二条:易知,只有第7天和第10天初记和复习单词的组数最多,是4组,为了方便,先确定这两天的记忆总数。此题答案不惟一,下面是一个解法。因为10≤每天初记和复习的单词总数≤50,可知1a,4a,5a,6a,7a均小于10。在第7天,507641aaaa,则201a,不妨设201a。于是10764aaa。在第10天,507421aaaa,则102a。据已知,997654321aaaaaaa,得3953aa。在第4天,50431aaa,则203a,在第14天,50651aaa,则205a,于是193a,205a。这样,ia(i=1,2,3,4,5,6,7)均已确定。经验证,符合题目要求,产生下表5.解:从标上数1的那点数起,标记上数1数过的点个数为1,标记上数2的点数为1...