2.2独立性检验的基本思想课标要求通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高。三维目标1.知识与技能通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高。.2.过程与方法经历由实际问题建立数学模型的过程,体会其基本方法.3.情感、态度与价值观体会回归分析在生产实际和日常生活中的广泛应用.教材分析在上一节研究吸烟是否对患肺癌有影响的问题中,表明了|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;|ad-bc|越大,说明吸烟与患肺癌之间关系越强。但这些量究竟要多大才能说明变量之间不独立,我们能不能选择一个量,用它的大小来检验变量之间是否不独立呢?学情分析回归分析主要是研究两个变量间的关系,是在必修三的基础上学习,本节回归分析是复习必修三的内容,学生比较容易掌握.教学重难点重点:独立性检验的基本方法难点:基本思想的领会及方法应用提炼的课题独立性检验的基本思想教学手段运用教学资源选择<<优化设计>>及多媒体课件教学过程(一)、提出问题,导入新课在上一节研究吸烟是否对患肺癌有影响的问题中,我们表明了|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;|ad-bc|越大,说明吸烟与患肺癌之间关系越强。但这些量究竟要多大才能说明变量之间不独立呢?我们能不能选择一个量,用它的大小来检验变量之间是否不独立呢?(二)、探究新课:为了使不同样本容量的数据有统一的评判标准,基于上面的分析,我们构造一个随机变量卡方统计量:为了消除样本对上式的影响,通常用卡方统计量()来进行估计。1、卡方统计量公式:由此若成立,即患病与吸烟没有关系,则χ2的值应该很小.把代入计算得χ2,统计学中有明确的结论,在成立的情况下,随机事件“”发生的概率约为,即,也就是说,在成立的情况下,对统计量χ2进行多次观测,观测值超过的频率约为.由此,我们有99%的把握认为不成立,即有99%的把握认为“患病与吸烟有关系”.象以上这种用统计量研究吸烟与患呼吸道疾病是否有关等问题的方法称为独立性检验.说明:(1)估计吸烟者与不吸烟者患病的可能性差异是用频率估计概率,利用χ2进行独立性检验,可以对推断的正确性的概率作出估计,观测数据取值越大,效果越好.在实际应用中,当均不小于5,近似的效果才可接受.(2)这里所说的“呼吸道疾病与吸烟有关系”是一种统计关系,这种关系是指“抽烟的人患呼吸道疾病的可能性(风险)更大”,而不是说“抽烟的人一定患呼吸道疾病”.(3)在假设下统计量χ2应该很小,如果由观测数据计算得到χ2的观测值很大,则在一定程度上说明假设不合理(即统计量χ2越大,“两个分类变量有关系”的可能性就越大).2、独立性检验的一般步骤:一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值:类和类(如吸烟与不吸烟),Ⅱ也有两类取值:类和类(如患呼吸道疾病与不患呼吸道疾病),得到如下表所示:Ⅱ类类合计Ⅰ类类合计推断“Ⅰ和Ⅱ有关系”的步骤为:第一步,提出假设:两个分类变量Ⅰ和Ⅱ没有关系;第二步,根据2×2列联表和公式计算χ2统计量;第三步,查对课本中临界值表,作出判断。(三)、方法运用1、例题:例1、在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示.问:该种血清能否起到预防感冒的作用?未感冒感冒合计使用血清258242500未使用血清216284500合计4745261000分析:在使用该种血清的人中,有的人患过感冒;在没有使用该种血清的人中,有的人患过感冒,使用过血清的人与没有使用过血清的人的患病率相差较大.从直观上来看,使用过血清的人与没有使用过血清的人的患感冒的可能性存在差异.解:提出假设:感冒与是否使用该种血清没有关系.由列联表中的数据,求得∵当成立时,的概率约为,∴我们有99%的把握认为:该种血清能起到预防感冒的作用.(三)课堂练习:(四)课堂小结:1、独立性检验的思想方法及一般步骤。2、卡方统计量公式。3、临界值。