电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第三章 函数概念与性质 3.1.1 函数的概念教师用书 新人教A版必修第一册-新人教A版高一第一册数学教案VIP免费

高中数学 第三章 函数概念与性质 3.1.1 函数的概念教师用书 新人教A版必修第一册-新人教A版高一第一册数学教案_第1页
1/10
高中数学 第三章 函数概念与性质 3.1.1 函数的概念教师用书 新人教A版必修第一册-新人教A版高一第一册数学教案_第2页
2/10
高中数学 第三章 函数概念与性质 3.1.1 函数的概念教师用书 新人教A版必修第一册-新人教A版高一第一册数学教案_第3页
3/10
3.1.1函数的概念考点学习目标核心素养函数的概念理解函数的概念,了解构成函数的三要素数学抽象求函数的定义域会求一些简单函数的定义域,并会用区间表示数学运算同一个函数掌握同一个函数,并会判断数学抽象求函数值和值域会求简单函数的函数值和值域,并会用区间表示值域数学运算问题导学预习教材P60-P66,并思考以下问题:1.函数的定义是什么?2.函数的自变量、定义域是如何定义的?3.函数的值域是如何定义的?4.区间的概念是什么?如何用区间表示数集?1.函数的有关概念■名师点拨对函数概念的3点说明(1)当A,B为非空数集时,符号f:A→B表示从集合A到集合B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”表示对应关系,在不同的函数中f的具体含义不一样.2.区间的概念及表示(1)区间定义及表示设a,b是两个实数,而且aa}{x|x≤a}{x|x0,解得x<4,所以此函数的定义域为(-∞,4).已知全集U=R,A={x|13},用区间可表示为(-∞,1]∪(3,+∞).答案:(-∞,1]∪(3,+∞)下图中能表示函数关系的是________.解析:由于③中的2与1和3同时对应,故③不是函数.答案:①②④函数的概念(1)如图可作为函数y=f(x)的图象的是()2(2)下列三个说法:①若函数的值域只含有一个元素,则定义域也只含有一个元素;②若f(x)=5(x∈R),则f(π)=5一定成立;③函数就是两个集合之间的对应关系.其中正确说法的个数为()A.0B.1C.2D.3(3)已知集合A=[0,8],集合B=[0,4],则下列对应关系中,不能看作是从A到B的函数关系的是()A.f:x→y=xB.f:x→y=xC.f:x→y=xD.f:x→y=x【解析】(1)观察图象可知,A,B,C中任取一个x的值,y有可能有多个值与之对应,所以不是函数图象.D中图象是函数图象.(2)①错误.若函数的值域只含有一个元素,则定义域不一定只含有一个元素;②正确.因为f(x)=5,这个数值不随x的变化而变化,所以f(π)=5;③错误.函数就是两个非空数集之间的对应关系.(3)对于A中的任意一个元素,在对应关系f:x→y=x;f:x→y=x;f:x→y=x下,在B中都有唯一的元素与之对应,故能构成函数关系.对于A中的元素8,在对应关系f:x→y=x下,在B中没有元素与之对应,故不能构成函数关系.【答案】(1)D(2)B(3)D(1)判断所给对应关系是否为函数的方法①先观察两个数集A,B是否非空;②验证对应关系下,集合A中x的任意性,集合B中y的唯一性.(2)根据图形判断对应关系是否为函数的步骤①任取一条垂直于x轴的直线l;②在定义域内平行移动直线l;③若l与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.1.下列图形中可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数的图象是()解析:选C.由函数的定义知选C.2.下列对应关系是集合P上的函数的是________.①P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q中的元素相对应;3②P={-1,1,-2,2},Q={1,4},对应关系f:x→y=x2,x∈P,y∈Q;③P={三角形},Q={x|x>0},对应关系f:对P中的三角形求面积与集合Q中的元素对应....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第三章 函数概念与性质 3.1.1 函数的概念教师用书 新人教A版必修第一册-新人教A版高一第一册数学教案

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部