电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第3章 不等式 3.2 一元二次不等式(第1课时)一元二次不等式及其解法讲义 苏教版必修5-苏教版高二必修5数学教案VIP免费

高中数学 第3章 不等式 3.2 一元二次不等式(第1课时)一元二次不等式及其解法讲义 苏教版必修5-苏教版高二必修5数学教案_第1页
1/8
高中数学 第3章 不等式 3.2 一元二次不等式(第1课时)一元二次不等式及其解法讲义 苏教版必修5-苏教版高二必修5数学教案_第2页
2/8
高中数学 第3章 不等式 3.2 一元二次不等式(第1课时)一元二次不等式及其解法讲义 苏教版必修5-苏教版高二必修5数学教案_第3页
3/8
第1课时一元二次不等式及其解法学习目标核心素养1.掌握一元二次不等式的解法.(重点)2.能根据“三个二次”之间的关系解决简单问题.(难点)通过一元二次不等式的学习,培养数学运算素养.1.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考1:不等式x2-y2>0是一元二次不等式吗?[提示]此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.3.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?[提示]不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.4.三个“二次”的关系设f(x)=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac判别式Δ>0Δ=0Δ<0解不等式f(x)>0或求方程f(x)=0的解有两个不等的实数解x1,x2有两个相等的实数解x1=x2没有实数解f(x)<0的步骤画函数y=f(x)的示意图得等的集f(x)>0{x|x<x1_或x>x2}R不式解f(x)<0{x|x1<x<x2}∅∅思考3:若一元二次不等式ax2+x-1>0的解集为R,则实数a应满足什么条件?[提示]结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R.1.不等式3+5x-2x2≤0的解集为()A.B.C.D.RC[3+5x-2x2≤0⇒2x2-5x-3≥0⇒(x-3)(2x+1)≥0⇒x≥3或x≤-.]2.不等式3x2-2x+1>0的解集为()A.B.C.∅D.RD[因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x2-2x+1>0的解集为R.]3.不等式x2-2x-5>2x的解集是________.{x|x>5或x<-1}[由x2-2x-5>2x,得x2-4x-5>0,因为x2-4x-5=0的两根为-1,5,故x2-4x-5>0的解集为{x|x<-1或x>5}.]4.不等式-3x2+5x-4>0的解集为________.∅[原不等式变形为3x2-5x+4<0.因为Δ=(-5)2-4×3×4=-23<0,所以3x2-5x+4=0无解.由函数y=3x2-5x+4的图象可知,3x2-5x+4<0的解集为∅.]一元二次不等式的解法【例1】解下列不等式:(1)2x2+7x+3>0;(2)-4x2+18x-≥0;(3)-2x2+3x-2<0.[解](1)因为Δ=72-4×2×3=25>0,所以方程2x2+7x+3=0有两个不等实根x1=-3,x2=-.又二次函数y=2x2+7x+3的图象开口向上,所以原不等式的解集为.(2)原不等式可化为2≤0,所以原不等式的解集为.(3)原不等式可化为2x2-3x+2>0,因为Δ=9-4×2×2=-7<0,所以方程2x2-3x+2=0无实根,又二次函数y=2x2-3x+2的图象开口向上,所以原不等式的解集为R.解不含参数的一元二次不等式的一般步骤1化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正.2判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.3求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根.4画草图.根据一元二次方程根的情况画出对应的二次函数的草图.5写解集.根据图象写出不等式的解集.1.解下列不等式(1)2x2-3x-2>0;(2)x2-4x+4>0;(3)-x2+2x-3<0;(4)-3x2+5x-2>0.[解](1) Δ>0,方程2x2-3x-2=0的根是x1=-,x2=2,∴不等式2x2-3x-2>0的解集为.(2) Δ=0,方程x2-4x+4=0的根是x1=x2=2,∴不等式x2-4x+4>0的解集为.(3)原不等式可化为x2-2x+3>0,由于Δ<0,方程x2-2x+3=0无解,∴不等式-x2+2x-3<0的解集为R.(4)原不等式可化为3x2-5x+2<0,由于Δ>0,方程3x2-5x+2=0的两根为x1=,x2=1,∴不等式-3x2+5x-2>0的解集为.含参数的一元二次不等式的解法【例2】解关于x的不等式ax2-(a+1)x+1<0.思路探究:①对于二次项的系数a是否分a=0,a<0,a>0三类进行讨论?②当a≠0时,是否还要比较两根的大小?[解]当a=0时,原不等式可化为x>1.当a≠0时,原不等式可化...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第3章 不等式 3.2 一元二次不等式(第1课时)一元二次不等式及其解法讲义 苏教版必修5-苏教版高二必修5数学教案

您可能关注的文档

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部