第2课时等比数列前n项和的性质及应用学习目标核心素养1.掌握等比数列前n项和的性质的应用.(重点)2.掌握等差数列与等比数列的综合应用.(重点)3.能用分组转化方法求数列的和.(重点、易错点)1.通过等比数列前n项和公式的函数特征的学习,体现了逻辑推理素养.2.借助等比数列前n项和性质的应用及分组求和,培养学生的数学运算素养.1.等比数列前n项和的变式当公比q≠1时,等比数列的前n项和公式是Sn=,它可以变形为Sn=-·qn+,设A=,上式可写成Sn=-Aqn+A.由此可见,非常数列的等比数列的前n项和Sn是由关于n的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q=1时,因为a1≠0,所以Sn=na1是n的正比例函数(常数项为0的一次函数).2.等比数列前n项和的性质性质一:若Sn表示数列{an}的前n项和,且Sn=Aqn-A(Aq≠0,q≠±1),则数列{an}是等比数列.性质二:若数列{an}是公比为q的等比数列,则①在等比数列中,若项数为2n(n∈N*),则=q.②Sn,S2n-Sn,S3n-S2n成等比数列.思考:在等比数列{an}中,若a1+a2=20,a3+a4=40,如何求S6的值?[提示]S2=20,S4-S2=40,∴S6-S4=80,∴S6=S4+80=S2+40+80=140.1.设数列{an}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|=________.15[法一:a1+|a2|+a3+|a4|=1+|1×(-2)|+1×(-2)2+|1×(-2)3|=15.法二:因为a1+|a2|+a3+|a4|=|a1|+|a2|+|a3|+|a4|,数列{|an|}是首项为1,公比为2的等比数列,故所求代数式的值为=15.]2.已知数列{an}为等比数列,且前n项和S3=3,S6=27,则公比q=________.2[q3===8,所以q=2.]3.若数列{an}的前n项和Sn=an+,则{an}的通项公式是an=________.(-2)n-1[当n=1时,S1=a1+,所以a1=1.当n≥2时,an=Sn-Sn-1=an+-=(an-an-1),所以an=-2an-1,即=-2,所以{an}是以1为首项的等比数列,其公比为-2,所以an=1×(-2)n-1,即an=(-2)n-1.]4.在正项等比数列{an}中,已知a1a2a3=4,a4a5a6=12,an-1·anan+1=324,则n=________.14[设数列{an}的公比为q,由a1a2a3=4=aq3与a4a5a6=12=aq12,可得q9=3,an-1anan+1=aq3n-3=324,因此q3n-6=81=34=q36,所以3n-6=36,即n=14.]等比数列前n项和公式的函数特征应用【例1】已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}()A.一定是等差数列B.一定是等比数列C.是等差数列或等比数列D.既非等差数列,也非等比数列B[当n≥2时,an=Sn-Sn-1=(a-1)·an-1;当n=1时,a1=a-1,满足上式.∴an=(a-1)·an-1,n∈N*.∴=a,∴数列{an}是等比数列.]1.已知Sn通过an=求通项an,应特别注意n≥2时,an=Sn-Sn-1.2.若数列{an}的前n项和Sn=A(qn-1),其中A≠0,q≠0且q≠1,则{an}是等比数列.1.若{an}是等比数列,且前n项和为Sn=3n-1+t,则t=________.-[显然q≠1,此时应有Sn=A(qn-1),又Sn=·3n+t,∴t=-.]等比数列前n项和性质的应用[探究问题]1.在等差数列中,我们知道Sm,S2m-Sm,S3m-S2m,…仍组成等差数列.在等比数列{an}中,若连续m项的和不等于0,那么Sm,S2m-Sm,S3m-S2m,…仍组成等比数列吗?为什么?[提示]Sm,S2m-Sm,S3m-S2m,…仍组成等比数列. 在等比数列{an}中有am+n=amqn,∴Sm=a1+a2+…+am,S2m-Sm=am+1+am+2+…+a2m=a1qm+a2qm+…+amqm=(a1+a2+…+am)qm=Sm·qm.同理S3m-S2m=Sm·q2m,…,在Sm≠0时,Sm,S2m-Sm,S3m-S2m,…仍组成等比数列.2.若数列{an}为项数为偶数的等比数列,且S奇=a1+a3+a5+…,S偶=a2+a4+a6+…,那么等于何值?[提示]由等比数列的通项公式可知==q.【例2】(1)等比数列{an}的前n项和为Sn,S2=7,S6=91,则S4为()A.28B.32C.21D.28或-21(2)等比数列{an}中,公比q=3,S80=32,则a2+a4+a6+…+a80=________.思路探究:(1)由S2,S4-S2,S6-S4成等比数列求解.(2)利用=q,及S2n=S奇+S偶求解.(1)A(2)24[(1) {an}为等比数列,∴S2,S4-S2,S6-S4也为等比数列,即7,S4-7,91-S4成等比数列,...