课题互斥事件有一个发生的概率(2)课型新授课教学目标1.使学生了解互斥事件和对立事件的意义,能够运用互斥事件的概率加法公式计算一些事件的概率,会利用两个对立事件的概率和等于1来简化一些概率的计算.2.通过互斥事件的概率的计算,进一步理解随机事件的概率的意义,提高分析问题和解决问题的能力.教学重点互斥事件、对立事件概念的理解及其概率的计算,培养学生类比推理、信息迁移能力和转化的数学思想.教学难点互斥事件、对立事件概念的理解及其概率的计算,培养学生类比推理、信息迁移能力和转化的数学思想.教法与学法启发引导法,自主探究和共同探究相结合教学用具多媒体、实物投影仪是否用多媒体是教学过程教师活动学生活动补充例1.今有标号为1、2、3、4、5的五封信,另有同样标号的五个信封,现将五封信任意地装入五个信封中,每个信封一封信,试求至少有两封信与信封标号一致的概率分析:至少有两封信与信封的标号配对,包含了下面两种类型:两封信与信封标号配对;3封信与信封标号配对;4封信与信封标号配对,注意:4封信配对与5封信配对是同一类型.现在我们把上述三种类型依次记为事件A1、A2、A3,可以看出A1、A2、A3两两互斥,记“至少有两封信与信封标号配对”为事件A,事件A发生相当于A1、A2、A3有一个发生,所以用公式可以计算P(A)。解:设至少有两封信配对为事件A,恰好有两封信配对为事件A1,恰有3封信配对为事件A2,恰有4封信(也就是5封信)配对为事件A3,则事件A等于事件A1+A2+A3,且A1、A2、A3事件为两两互斥事件,所以.5封信放入5个不同信封的所有放法种数为,其中正好有2封信配对的不同结果总数为正好有3封信配对的不同结果总数为,正好有4封信(5封信)全配对的不同结果总数为1,而且出现各种结果的可能性相同,共同探究应用结论教师活动学生活动补充说明:至少有两封信与信封配对的反面是全不配对和恰好有1封信配对,但是配对越少,计算该结果的所有方法总数越困难,即计算该事件的概率越不方便.现在把问题改为计算“至多两封信与信封标号配对”的概率是多少?我们转化为求其对立事件的概率就简单得多,它的对立事件为“3封信配对或4封信(即5封)配对”,得到其结果的概率为,在计算事件的概率时有时采用“正难则反”的逆向思维方法,直接计算事件的概率比较难,而计算其对立事件的概率共同探究归纳总结用心爱心专心115号编辑比较容易时可采用这种方法例2袋中装有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率,(2)3只颜色全相同的概率,(3)3只颜色不全相同的概率,(4)3只颜色全不相同的概率.分析:有放回地抽3次的所有不同结果总数为,3只全是红球是其中的1种结果,同样3只颜色全相同是其中3种结果,全红、全黄、全白,用求等可能事件的概率方式可以求它们的概率.“3种颜色不全相同”包含的类型较多,而其对立事件为“三种颜色全相同”却比较简单,所以用对立事件的概率方式求解说明:如果3种小球的数目不是各1个,而是红球3个,黄球和白球各两个,其结果又分别如何?首先抽3次的所有不同结果总数为,全是红球的结果总数为,所以全是红球的概率为,同样全是黄球的概率为,全是白球的概率也是,所以3只球颜色全相同的概率为上述三个事件的概率之和,,“三种颜色不全相同”为“三种颜色全相同”的对立事件,其概率为“3只小球颜色全不相同”可以理解为三种颜色的小球各取一只,然后再将它们排成一列,得到抽取的一种结果,其所有不同结果总数为(种),所以“3只小球颜色全不相同”的概率为例3有4个红球,3个黄球,3个白球装在袋中,小球的形状、大小相同,从中任取两个小球,求取出两个同色球的概率是多少?分析:与倒2中取球方式不同的是,从中取出两球是不放回的取出.处教师活动学生活动补充理上,例2是分步取球,先取哪个后取哪个是有区别地对待,而本例中,只要搞清是取的什么球,直接用组合数列式.取出两个同色球可以分成下面几个类型:两个红球;两个黄球;两个白球.说明:本题求取出两个同色球的概率,对结果比较容易分类,如果换上“取出3个球,至少两个同颜色”,这样的问...