1.3交集、并集课标知识与能力目标1.理解交集、并集的概念及其性质;2.会求已知两个集合的交集、并集;3.初步会求集合的运算的综合问题;4.理解区间的表示法.知识点1交集1.交集的定义(1)文字语言:一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集,记作A∩B(读作“A交B”).(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)Venn图2.交集的常用性质:(1)A∩A=A;(2)A∩=;(3)A∩B=B∩A;(4)(A∩B)∩C=A∩(B∩C);(5)A∩BA,A∩BB注意:(1)交集(A∩B)实质上是A与B的公共元素所组成的集合.(2)当集合A与B没有公共元素时,不能说A与B没有交集,而是A∩B=.3.区间设a,b∈R,且aa},(-∞,b)={x|x0},B={x|x≤1},求A∩B;(3)设A={x|x=3k,k∈Z},B={y|y=3k+1k∈Z},C={z|z=3k+2,k∈Z},D={x|x=6k+1,k∈Z},求A∩B;A∩C;C∩B;D∩B;例2(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∩B;(2)设集合A={(x,y)|y=x+1,x∈R},B={(x,y)|y=-x2+2x+34,x∈R},求A∩B;2知识点2并集1.并集定义(1)文字语言:一般地,由所有属于集合A或者属于集合B的元素构成的集合,称为A与B的并集,记作A∪B(读作“A并B”).(2)符号语言:A∪B={x|x∈A或x∈B}.(3)Venn图①②③注意:并集(A∪B)实质上是A与B的所有元素所组成的集合,但是公共元素在同一个集合中要注意元素的互异性.2.并集的常用性质:(1)A∪A=A;(2)A∪=A;(3)A∪B=B∪A;(4)(A∪B)∪C=A∪(B∪C);(5)AA∪B,BA∪B典型例题考点1求集合的并集例1根据下面给出的A、B,求A∪B①A={-1,0,1},B={0,1,2,3};②A={y|y=x2-2x},B={x||x|≤3};③A={梯形},B={平行四边形}.例2已知全集U=R,A={x|-4≤x<2},B=(-1,3),P={x|x≤0,或x≥52},求:①(A∪B)∩P②()UCB∪P③(A∩B)∪()UCP.例3已知集合A={y|y=x-1,x∈R},B={(x,y)|y=x2-1,x∈R},C={x|y=x+1,y≥3},求()ACB3拓展提优题型1运用交集性质求题中的参数注意:若A∩B=,则∅A、B可能的情况为:(1)A、B非空但无公共元素;(2)A、B均为空集;(3)A与B中只有一个是空集.例1已知数集A={a2,a+1,-3},数集B={a-3,a-2,a2+1},若A∩B={-3},求a的值.例2已知集合A={x|25}.(1)若A∩B=,求∅a的取值范围;(2)若A∪B=B,求a的取值范围.例3若集合P={1,2,4,m},Q={2,m2},满足P∪Q={1,2,4,m},求实数m的值组成的集合.例4已知集合A={x|x2-4x+3=0},B={x|x2-ax-1=0},C={x|x2-mx+1=0},且A∪B=A,A∩C=C,求a,m的值或取范围.5