电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 1.3.3 全称命题与特称命题的否定二教案 北师大选修1-1VIP免费

高中数学 1.3.3 全称命题与特称命题的否定二教案 北师大选修1-1_第1页
1/2
高中数学 1.3.3 全称命题与特称命题的否定二教案 北师大选修1-1_第2页
2/2
第一章常用逻辑用语1.3.3全称命题与特称命题的否定教学过程学生探究过程:1.回顾我们在上一节中学习过逻辑联结词“非”.对给定的命题p,如何得到命题p的否定(或非p),它们的真假性之间有何联系?2.思考、分析判断下列命题是全称命题还是特称命题,你能写出下列命题的否定吗?(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)x∈R,x2-2x+1≥0。(4)有些实数的绝对值是正数;(5)某些平行四边形是菱形;(6)x∈R,x2+1<0。3.推理、判断你能发现这些命题和它们的否定在形式上有什么变化?(让学生自己表述)前三个命题都是全称命题,即具有形式“”。其中命题(1)的否定是“并非所有的矩形都是平行四边形”,也就是说,存在一个矩形不都是平行四边形;命题(2)的否定是“并非每一个素数都是奇数;”,也就是说,存在一个素数不是奇数;命题(3)的否定是“并非x∈R,x2-2x+1≥0”,也就是说,x∈R,x2-2x+1<0;后三个命题都是特称命题,即具有形式“”。其中命题(4)的否定是“不存在一个实数,它的绝对值是正数”,也就是说,所有实数的绝对值都不是正数;命题(5)的否定是“没有一个平行四边形是菱形”,也就是说,每一个平行四边形都不是菱形;命题(6)的否定是“不存在x∈R,x2+1<0”,也就是说,x∈R,x2+1≥0;4.发现、归纳从命题的形式上看,前三个全称命题的否定都变成了特称命题。后三个特称命题的否定都变成了全称命题。一般地,对于含有一个量词的全称命题的否定,有下面的结论:全称命题P:它的否定¬Px∈M,¬P(x)特称命题P:用心爱心专心1它的否定¬P:x∈M,¬P(x)全称命题和否定是特称命题。特称命题的否定是全称命题。5.巩固练习判断下列命题是全称命题还是特称命题,并写出它们的否定:(1)p:所有能被3整除的整数都是奇数;(2)p:每一个四边形的四个顶点共圆;(3)p:对x∈Z,x2个位数字不等于3;(4)p:x∈R,x2+2x+2≤0;(5)p:有的三角形是等边三角形;(6)p:有一个素数含三个正因数。6.教学反思与作业(1)教学反思:如何写出含有一个量词的命题的否定,原先的命题与它的否定在形式上有什么变化?(2)作业:P29习题1.4A组第3题:B组(1)(2)(3)(4)用心爱心专心2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 1.3.3 全称命题与特称命题的否定二教案 北师大选修1-1

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部