深圳大学考试答题纸(以论文、报告等形式考核专用)二○○九~二○○一零学年度第2学期课程编号课程名称计算机控制系统主讲教师李东评分学号姓名专业年级2007级光电工程学院测控技术与仪器教师评语:题目:一级倒立摆模型的仿真一、倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。故其研究意义广泛。二、倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型分析过程如下:如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。现对小车和细杆摆分别进行隔离受力分析:(1)对小车有:F-F’sinθ=Mx’’(a)(2)对小球有:水平方向上运动为x+lsinθ故水平方向受力为F’sinθ=m(x+lsinθ)’’=m(x’+lcosθθ’)’=mx’’+mlcosθθ’’-mlsinθ(θ’)^2(b)由(a)、(b)两式得F=(M+m)x’’+mlcosθθ’’-mlsinθ(θ’)^2<1>小球垂直方向上位移为lcosθ故受力为F’cosθ-mg=m(lcosθ)’’=-mlθ’’sinθ-mlcosθ(θ’)^2即F’cosθ=mg-mlθ’’sinθ-mlcosθ(θ’)^2(c)由(b)、(c)两式得cosθx’’=gsinθ-lθ’’<2>故可得以下运动方程组:F=(M+m)x’’+mlcosθθ’’-mlsinθ(θ’)^2cosθx’’=gsinθ-lθ’’以上方程组为非线性方程组,故需做如下线性化处理:32sin,cos13!2!当θ很小时,由cosθ、sinθ的幂级数展开式可知,忽略高次项后,可得cosθ≈1,sinθ≈θ,θ’’≈0故线性化后运动方程组简化为F=(M+m)x’’+mlθ’’x’’=gθ-lθ’’下面进行系统状态空间方程的求解:以摆角θ、角速度θ’、小车位移x、加速度x’为系统状态变量,Y为输出,F为输入即X=4321xxxx=x'x'Y=x=31xx由线性化后运动方程组得x1’=θ’=x2x2’=''=MlgmMx1-Ml1FX3’=x’=x4x4’=x’’=-Mmgx1+M1F故空间状态方程如下:X’='4'3'2'1xxxx=00010000000010MmgMlgmM4321xxxx+MMl1010FY=31xx=010000014321xxxx+0F用MATLAB将状态方程转化成传递函数,取M=2kgm=0.1kgl=0.5m代入得>>A=[0100;20.58000;0001;-0.49000]>>B=[0;-1;0;0.5]>>C=[1000;0010]>>D=[0;0]>>[num,den]=ss2tf(A,B,C,D,1);>>[num,den]=ss2tf(A,B,C,D,1)num=0-0.0000-1.0000000-0.00000.5000-0.0000-9.8000den=1.00000-20.580000由上可以得出角度对力F的传递函数:位移X对外力F的传递函数:三、用MATLAB的Simulink仿真系统进行建模58.201)()(2ssFs24258.208.95.0)()(ssssFsX1、没校正之前的θ-F控制系统由于未加进控制环节,故系统输出发散2、加进控制环节,实现时域的稳定控制给系统加入PID控制,设置系统稳定值为0,给系统一个初始干扰冲击信号采用试凑法不断调整PID参数,使系统达到所需的控制效果当系统Kp=-100,Ti=Td=0时输出如下:TransferFcn-s2s+-20.58s42ScopePulseGeneratorConstant1TransferFcn-1s+-20.582ScopePulseGeneratorIntegrator1sGain3-40Gain11Gain-K-Derivativedu/dtConstant0不断地调整参数,最后得到稳定的响应Kp=-1000,Ti=1,Td=-40时可见调整好参数后,系统基本达到稳定,净差基本为0,超调较小,响应时间较小。再微调后,得到最终的响应曲线响应时间较小,Tp=0.2s3、时域达到稳定后,进行离散化分析离散模型系统控制框图如下当Kp=-100,Ti=0,Td=0时输出:发散,需加大Kp、增加Ti、Td控制Zero-OrderHoldTransferF...