百度文库,精选习题试题习题,尽在百度第四节数列求和、数列的综合应用考点一数列求和1.(2013·新课标全国Ⅱ,3)等比数列{an}的前n项和为Sn.已知S3=a2+10a1,a5=9,则a1=()A.13B.-13C.19D.-19解析设公比为q,则由S3=a2+10a1,得a1+a2+a3-a2=10a1,故a3=9a1,所以q2=9.由a5=9,得a1=19.答案C2.(2012·大纲全国,5)已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列1anan+1的前100项和为()A.100101B.99101C.99100D.101100解析由S5=5a3及S5=15得a3=3,∴d=a5-a35-3=1,a1=1,∴an=n,1anan+1=1n(n+1)=1n-1n+1,所以数列1anan+1的前100项和T100=1-12+12-13+⋯+1100-1101=1-1101=100101,故选A.答案A3.(2011·天津,4)已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,Sn为{an}的前n项和,n∈N*,则S10的值为()A.-110B.-90C.90D.110解析由题意得a27=a3·a9,又公差d=-2,∴(a3-8)2=a3(a3-12),∴a3=16.∴S10=10(a1+a10)2=10(a3+a8)2=5(a3+a3+5d)=5×(16+16-10)=110,故选D.答案D4.(2013·辽宁,14)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.解析因为x2-5x+4=0的两根为1和4,又数列{an}是递增数列,所以a1=1,a3=4,所以q=2.百度文库,精选习题试题习题,尽在百度所以S6=1·(1-26)1-2=63.答案635.(2015·新课标全国Ⅱ,16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.解析由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,所以Sn≠0,所以Sn+1-SnSnSn+1=1,即1Sn+1-1Sn=-1,故数列1Sn是以1S1=-1为首项,-1为公差的等差数列,得1Sn=-1-(n-1)=-n,所以Sn=-1n.答案-1n6.(2012·新课标,16)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为________.解析当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+3+a2k+1=2,∴a2k-1=a2k+3,∴a1=a5=⋯=a61.∴a1+a2+a3+⋯+a60=(a2+a3)+(a4+a5)+⋯+(a60+a61)=3+7+11+⋯+(2×60-1)=30×(3+119)2=30×61=1830.答案18307.(2015·山东,18)设数列{an}的前n项和为Sn.已知2Sn=3n+3.(1)求{an}的通项公式;(2)若数列{bn}满足anbn=log3an,求{bn}的前n项和Tn.解(1)因为2Sn=3n+3,所以2a1=3+3,故a1=3,当n>1时,2Sn-1=3n-1+3,此时2an=2Sn-2Sn-1=3n-3n-1=2×3n-1,即an=3n-1,所以an=3,n=1,3n-1,n>1.(2)因为anbn=log3an,所以b1=13,当n>1时,bn=31-nlog33n-1=(n-1)·31-n.所以T1=b1=13;当n>1时,Tn=b1+b2+b3+⋯+bn=13+(1×3-1+2×3-2+⋯+(n-1)×31-n),百度文库,精选习题试题习题,尽在百度所以3Tn=1+(1×30+2×3-1+⋯+(n-1)×32-n),两式相减,得2Tn=23+(30+3-1+3-2+⋯+32-n)-(n-1)×31-n=23+1-31-n1-3-1-(n-1)×31-n=136-6n+32×3n,所以Tn=1312-6n+34×3n,经检验,n=1时也适合.综上可得Tn=1312-6n+34×3n.8.(2015·天津,18)已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{an}的通项公式;(2)设bn=log2a2na2n-1,n∈N*,求数列{bn}的前n项和.解(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1),又因为q≠1,故a3=a2=2,由a3=a1q,得q=2.当n=2k-1(k∈N*)时,an=a2k-1=2k-1=2n-12;当n=2k(k∈N*)时,an=a2k=2k=2n2.所以,{an}的通项公式为an=1222,2,nnnn为奇数为偶数(2)由(1)得bn=log2a2na2n-1=n2n-1.设{bn}的前n项和为Sn,则Sn=1×120+2×121+3×122+⋯+(n-1)×12n-2+n×12n-1,12Sn=1×121+2×122+3×123+⋯+(n-1)×12n-1+n×12n.上述两式相减得:百度文库,精选习题试题习题,尽在百度12Sn=1+12+122+⋯+12n-1-n2n=1-12n1-...