平衡原理一、平衡小车原理平衡小车是通过两个电机运动下实现小车不倒下直立行走的多功能智能小车,在外力的推拉下,小车依然保持不倒下。这么一说可能还没有很直观的了解究竟什么是平衡小车,不过这个平衡小车实现的原理其实是在人们生活中的经验得来的。如果通过简单的练习,一般人可以通过自己的手指把木棒直立而不倒的放在指尖上,所以练习的时候,需要学会的两个条件:一是放在指尖上可以移动二是通过眼睛观察木棒的倾斜角度和倾斜趋势(角速度)。通过手指的移动去抵消木棒倾斜的角度和趋势,使得木棒能直立不倒。这样的条件是不可以缺一的,实际上加入这两个条件,控制过程中就是负反馈机制。而世界上没有任何一个人可以蒙眼不看,就可以直立木棒的,因为没有眼睛的负反馈,就不知道笔的倾斜角度和趋势。这整个过程可以用一个执行式表达:平衡小车也是这样的过程,通过负反馈实现平衡。与上面保持木棒直立比较则相对简单,因为小车有两个轮子着地,车体只会在轮子滚动的方向上发生倾斜。控制轮子转动,抵消在一个维度上倾斜的趋势便可以保持车体平衡了。■车体垂直车轮保持静★车体角左倾斜,车轮向左扣速车体向右倾斜"车轮向右加速运行U呷she所以根据上述的原理,通过测量小车的倾角和倾角速度控制小车车轮的加速度来消除小车的倾角。因此,小车倾角以及倾角速度的测量成为控制小车直立的关键。我们的平衡小车使用了测量倾角和倾角速度的集成传感器陀螺仪-MPU6050二、角度(物理分析PD算法)控制平衡小车,使得它作加速运动。这样站在小车上(非惯性系,以车轮作为坐标原点)分析倒立摆受力,它就会受到额外的惯性力,该力与车轮的加速度方向相反,大小成正比。这样倒立摆(如图2)所受到的回复力为:公式1F=mgsin9-macosQ^mg9-mki9式1中,由于◎很小,所以进行了线性化。假设负反馈控制是车轮加速度a与偏角e成正比,比例为ki。如果比例ki>g,(g是重力加速度)那么回复力的方向便于位移方向相反了图图石卜力引起的而为了让倒立摆能够尽快回到垂直位置稳定下来,还需要增加阻尼力。增加的阻尼力与偏角的速度成正比,方向相反,因此公式1可改为:F=mg9-mkl9-mk29'按照上述倒立摆的模型,可得出控制小车车轮加速度的算法:a=k19+k29、式中9为小车角度,9'为角速度。klk2都是比例系数根据上述内容,建立速度的比例微分负反馈控制,根据基本控制理论讨论小车通过闭环控制保持稳定的条件(这里需要对控制理论有基本了解)。假设外力干扰引起车模产生角加速度兀(t)。沿着垂直于车模地盘方向进行受力分析,可以得到车模倾角与车轮运动加速度以及外力干扰加速度a(t)兀(t)之间的运动方程。如图3所示。丄攀L即冷"⑴卜叩隔[0(F)]仏⑴在謝度勺很小吋*忑动方程简化为:舉摸静止时:^(x)=0二豊么艸)+5)在角度反馈控制中,与角度成比例的控制量是称为比例控制;与角速度成比例的控制量称为微分控制(角速度是角度的微分)。因此上面系数kl,k2分别称为比例和微分控制参数。其中微分参数相当于阻尼力,可以有效抑制车模震荡。通过微分抑制控制震荡的思想在后面的速度和方向控制中也同样适用。总结控制车模直立稳定的条件如下:(1)能够精确测量车模倾角9的大小和角速度9'的大小;(2)可以控制车轮的加速度。上述控制实际结果是小车与地面不是严格垂直,而是存在一个对应的倾角。在重力的作用下,小车会朝着一个方面加速前进。为了保7⑴巾:心离车讥。庄轮担列加連度持小车的静止或者匀速运动需要消除这个安装误差。在实际小车制作过程中需要进行机械调整和软件参数设置。另外需要通过软件中的速度控制来实现速度的稳定性。在小车角度控制中出现的小车倾角偏差,使得小车在倾斜的方向上产生加速。这个结果可以用来进行小车的速度控制。下面将利用这个原理来调节小车的速度。三、测速(物理模型建立数学模型传递函数PD算法)假设小车在上面直立控制调节下已经能够保持平衡了,但是由于安装误差,传感器实际测量的角度与车模角度有偏差,因此小车实际不是保持与地面垂直,而是存在一个倾角。在重力的作用下,小车就会朝倾斜的方向加速前进。控制速度只要通过控制小车的倾角就可以实现了。具体实现需要...