函数第一课时一、教学目标1、通过观察具体实例中数量地相互关系,理解常量与变量、自变量和因变量函数极其表示方法,探索自变量与因变量之间的关系;2、了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系;3、体验数学与现实生活地紧密联系。二、教学重点与难点重点:理解常量与变量、自变量和因变量函数极其表示方法,探索自变量与因变量之间地关系难点:探索自变量与因变量之间地关系三、教学过程1、创设情境在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题1:如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解:(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.从图中我们可以看到,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化.那么在生活中是否还有其它类似的数量关系呢?2、探究归纳问题2:银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.解随着存期x的增长,相应的年利率y也随着增长.问题3:收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:波长(m)30050060010001500频率f(kHz)1000600500300200观察上表回答:(1)波长和频率f数值之间有什么关系?(2)波长越大,频率f就________.解:(1)与f的乘积是一个定值,即f=300000,或者说.(2)波长越大,频率f就越小.问题4:圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_________.解:S=πr2.圆的半径越大,它的面积就越大.归纳变量与常量的概念在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量.三、实践应用例1:下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?解:(1)平均身高是146.1cm;(2)约从14岁开始身高增加特别迅速;(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量.例2:写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;(3)n边形的内角和S与边数n的关系式.解:(1)C=2πr,2π是常量,r、C是变量;(2)s=60t,60是常量,t、s是变量;(3)S=(n-2)×180,2、180是常量,n、S是变量.四、课堂练习1.分别指出下列各关系式中的变量与常量:(1)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是;(2)若直角三角形中的一个锐角的度数为α,则另一个锐角β(度)与α间的关系式是β=90-α;(3)若某种报纸的单价为a元,x表示购买这种报纸的份数,则购买报纸的总价y(元)与x间的关系是:y=ax.2.写出下列函数关系式,并指出式中的自变量与因变量:(1)每个同学购一本代数教科书,书的单价是2元,求总金额Y(元)与学生数n(个)的关系;(2)计划购买50元的乒乓球,求所能购买的总数n(个)与单价a(元)的关系.五、...