两角和与差的三角函数(1)一、课前检测1.(2009昆明市期末)已知tanα=2,则cos(2α+π)等于()A.53B.53C.54D.54答案A2.(2009玉溪一中期末)若sin0且tan0是,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案C二、知识梳理1.两角和的余弦公式的推导方法:2.基本公式sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=;tan(α±β)=.3.公式的变式tanα+tanβ=tan(α+β)(1-tanαtanβ)1-tanαtanβ=)tan(tantan4.常见的角的变换:2=(α+β)+(α-β);α=2+2α=(α+β)-β=(α-β)+β2=(α-2)-(2-β);)4()4(xx=2三、典型例题分析例1.求[2sin50°+sin10°(1+3tan10°)]·80sin22的值.解:原式=80sin210cos10sin3110sin50sin2=80sin2)10cos10sin310cos10sin50sin2(=10cos210cos10sin2310cos2110sin250sin2=10cos210cos40sin10sin250sin2用心爱心专心=60sin2210cos210cos60sin2=.62322变式训练1:(1)已知∈(2,),sin=53,则tan(4)等于()A.71B.7C.-71D.-7(2)sin163°sin223°+sin253°sin313°等于()A.-21B.21C.-23D.23解:(1)A(2)B例2.已知α(4,43),β(0,4),cos(α-4)=53,sin(43+β)=135,求sin(α+β)的值.解: α-4+43+β=α+β+2α∈(43,4)β∈(0,1sin311x)∴α-4∈(0,2)β+43∈(43,π)∴sin(α-4)=54cos(43)=-1312∴sin(α+β)=-cos[2+(α+β)]=-cos[(α-4)+(43)]=6556变式训练2:设cos(-2)=-91,sin(2-β)=32,且2π<<π,0<β<2π,求cos(+β).解: 2π<<π,0<β<2π,∴4π<α-2<π,-4π<2-β<2π.故由cos(-2)=-91,得sin(α-2)=954.由sin(2-β)=32,得cos(2-β)=35.∴cos2=cos[(-2)-(2-β)]=cos()cos()sin()sin()2222=1524593397527∴cos(+β)=2cos22-1=275227-1=-729239.例3.若sinA=55,sinB=1010,且A,B均为钝角,求A+B的值.用心爱心专心解 A、B均为钝角且sinA=55,sinB=1010,∴cosA=-A2sin1=-52=-552,cosB=-B2sin1=-103=-10103,∴cos(A+B)=cosAcosB-sinAsinB=552×10103-55×1010=22①又 2<A<,2<B<,∴<A+B<2②由①②知,A+B=47.变式训练3:在△ABC中,角A、B、C满足4sin22CA-cos2B=27,求角B的度数.解在△ABC中,A+B+C=180°,由4sin22CA-cos2B=27,得4·2)cos(1CA-2cos2B+1=27,所以4cos2B-4cosB+1=0.于是cosB=21,B=60°.例4.化简sin2·sin2+cos2cos2-21cos2·cos2.解方法一(复角→单角,从“角”入手)原式=sin2·sin2+cos2·cos2-21·(2cos2-1)·(2cos2-1)=sin2·sin2+cos2·cos2-21(4cos2·cos2-2cos2-2cos2+1)=sin2·sin2-cos2·cos2+cos2+cos2-21=sin2·sin2+cos2·sin2+cos2-21=sin2+cos2-21=1-21=21.方法二(从“名”入手,异名化同名)原式=sin2·sin2+(1-sin2)·cos2-21cos2·cos2=cos2-sin2(cos2-sin2)-21cos2·cos2用心爱心专心=cos2-sin2·cos2-21cos2·cos2=cos2-cos2·2cos21sin2=22cos1-cos2·)sin21(21sin22=22cos1-21cos2=21.方法三(从“幂”入手,利用降幂公式先降次)原式=22cos1·22cos1+22cos1·22cos1-21cos2·cos2=41(1+cos2·cos2-cos2-cos2)+41(1+cos2·cos2+cos2+cos2)-21·cos2·cos2=21.方法四(从“形”入手,利用配方法,先对二次项配方)原式=(sin·sin-cos·cos)2+2s...