专题探究课五高考中解析几何问题的热点题型1.(2015·全国Ⅰ卷)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点,(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.解(1)由题设可得M(2,a),N(-2,a),或M(-2,a),N(2,a).又y′=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=+==.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.2.(2016·北京卷)已知椭圆C:+=1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.(1)解由题意知a=2,b=1.所以椭圆方程为+y2=1,又c==.所以椭圆离心率e==.(2)证明设P点坐标为(x0,y0)(x0<0,y0<0),则x+4y=4,由B点坐标(0,1)得直线PB方程为:y-1=(x-0),令y=0,得xN=,从而|AN|=2-xN=2+,由A点坐标(2,0)得直线PA方程为y-0=(x-2),令x=0,得yM=,从而|BM|=1-yM=1+,所以S四边形ABNM=|AN|·|BM|====2.1即四边形ABNM的面积为定值2.3.已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,),且它的离心率e=.(1)求椭圆的标准方程;(2)与圆(x-1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足OM+ON=λOC,求实数λ的取值范围.解(1)设椭圆的标准方程为+=1(a>b>0),由已知得:解得所以椭圆的标准方程为+=1.(2)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以=1⇒2k=(t≠0),把y=kx+t代入+=1并整理得:(3+4k2)x2+8ktx+(4t2-24)=0,设M(x1,y1),N(x2,y2),则有x1+x2=-,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=,因为λOC=(x1+x2,y1+y2),所以C,又因为点C在椭圆上,所以,+=1⇒λ2==,因为t2>0,所以++1>1,所以0<λ2<2,所以λ的取值范围为(-,0)∪(0,).4.已知椭圆C的方程为:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为坐标原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.解(1)由题意,椭圆C的标准方程为+=1,所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=.故椭圆C的离心率e==.(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.因为OA⊥OB,则OA·OB=0,所以tx0+2y0=0,解得t=-.又x+2y=4,所以|AB|2=(x0-t)2+(y0-2)2=+(y0-2)2=x+y++4=x+++4=++4(01)的上顶点为A,右焦点为F,直线AF与圆M:x2+y2-6x-2y+7=0相切.(1)求椭圆C的方程;(2)若不过点A的动直线l与椭圆C相交于P,Q两点,且AP·AQ=0,求证:直线l过定点,并求出该定点N的坐标.(1)解将圆M的一般方程x2+y2-6x-2y+7=0化为标准方程为(x-3)2+(y-1)2=3,圆M的圆心为M(3,1),半径r=.由A(0,1),F(c,0)(c=)得直线AF:+y=1,即x+cy-c=0.由直线AF与圆M相切,得=.∴c=或c=-(舍去).∴a=,∴椭圆C的方程为+y2=1.(2)证明由AP·AQ=0,知AP⊥AQ,从而直线AP与坐标轴不垂直,由A(0,1)可设直线AP的方程为y=kx+1,直线AQ的方程为y=-x+1(k≠0),将y=kx+1代入椭圆C的方程+y2=1并整理得:(1+3k2)x2+6kx=0,解得x=0或x=-,因此P的坐标为,即.将上式中的k换成-,得Q.∴直线l的方程为y=+,化简得直线l的方程为y=x-.因此直线l过定点N.6.(2015·山东卷)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且点在椭圆C上.(1)求椭圆C的方程...