电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

一元二次方程各节知识点及典型例题VIP免费

一元二次方程各节知识点及典型例题_第1页
1/14
一元二次方程各节知识点及典型例题_第2页
2/14
一元二次方程各节知识点及典型例题_第3页
3/14
朱国林1第二章一元二次方程第一节一元二次方程第二节一元二次方程的解法第三节一元二次方程的应用第四节一元二次方程根与系数的关系五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有未知数,并且未和数的是2,这样的整式方程叫做一元二次方程。2、能使一元二次方程的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为的形式,这个形式叫做一元二次方程的一般形式。其中ax2是,a是,bx是,b是,c是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a为何值时,关于x的方程(a-1)x|a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A.-1B.0C.-1D.-1或1例2、已知多项式ax2-bx+c,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b的值(2)直接写出关于x的一元二次方程ax2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x的方程(k2-1)x2-(k+1)x-2=0(1)当k取何值时,此方程为一元一次方程?并求出此方程的根(2)当k取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。巩固练习1、下列方程中,是一元二次方程的为()A.x2=-1B.2x(x-1)+1=2x2C.x2+3x=2xD.ax2+bx+c-02、已知关于x的方程mx2+(m-1)x-1=2x2-x,当m取什么值时,这个方程是一元二次方程?朱国林23、若关于x的一元二次方程(a-2)x2+ax=3是一元二次方程,则a的取值范围是4、把方程(x-1)2-3x(x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a是方程x2-3x+1=0的一个根,求2a2-5a-2+231a的值6、若关于x的方程ax2+bx+c=0(a≠0)中,abc满足a+b+c=0和a-b+c=0,则方程的根是()A.1,0B.-1,0C.1,-1D.1,27、已知x=1是一元二次方程ax2+bx-40=0的一个解,且a≠b,求2222abab的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解一元一次方程的方法,叫做因式分解法。2、因式分解法的理论依据是:若ab=0,则或3、利用因式分解法解一元二次方程的步骤是:(1)将方程的化为0;(2)把方程的另一边分解成的乘积(3)令每个因式,得到两个一元一次方程;(4)分别解这两个一元一次方程,即可得到原一元二次方程的解。【在温州中考题中,若题中要求你用因式分解法解一元二次方程,只需要掌握两种分解因式的方法:①提公因式法分解因式;②用完全平方公式或平方差公式来分解因式】(二)4、开平方法:一般地,对于形如x2=a(a≥0)的方程,根据的定义,解得x1=,x2=,这种解一元二次方程的方法叫做开平方法。5、①形如x2=a(a≥0)或(x-a)2=b(b≥0)的一元二次方程,都可以用直接开平方法求得方程的解②用直接开平方法解方程(x-a)2=b(b≥0)得x1=,x2=(三)6、配方法:把一元二次方程的左边配成一个式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法。7、利用配方法解一元二次方程的步骤:(1)将方程化为一般形式(2)方程两边同除以二次项系数,把二次项系数化为1(3)移项:把常数项移到方程右边,使方程的左边为二次项和一次项,右边为常数项(4)配方:在方程的两边同时加上一次项系数一半的平方,使左边配成完全平方式(5)求解:若方程的右边是非负数,就用开平方法求解;如果右边是个负数,就可以直接拉出原方程无实数解(四)8、一元二次方程的求根公式:一般地,对于一元二次方程ax2+bx+c=0(a≠O),如果b2-4ac≥0,那么方程的两个根是,这个公式叫做一元二次方程的求根公式。9、公式法:利用求根公式,我们可以由一元二次方程ax2+bx+c=0(a≠O)的值,直...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

一元二次方程各节知识点及典型例题

文库当当响+ 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部