电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

浙江省奉化中学高中数学 第17课时 数学归纳法与不等式教案 新人教A版选修4-5VIP免费

浙江省奉化中学高中数学 第17课时 数学归纳法与不等式教案 新人教A版选修4-5_第1页
1/3
浙江省奉化中学高中数学 第17课时 数学归纳法与不等式教案 新人教A版选修4-5_第2页
2/3
浙江省奉化中学高中数学 第17课时 数学归纳法与不等式教案 新人教A版选修4-5_第3页
3/3
第17课时数学归纳法与不等式目的要求:重点难点:教学过程:一、引入:数学归纳法是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是递推的依据。实际上它使命题的正确性突破了有限,达到无限。证明时,关键是k+1步的推证,要有目标意识。二、典型例题:例1、证明:。例2、设,,证明贝努利不等式:。例3、设为正数,,证明:。例4、设数列{a}的前n项和为S,若对于所有的自然数n,都有S=,证明{a}是等差数列。(94年全国文)例5、已知数列,得,…,,…。S为其前n项和,求S、S、S、S,推测S公式,并用数学归纳法证明。(93年全国理)解:计算得S=,S=,S=,S=,猜测S=(n∈N)【注】从试验、观察出发,用不完全归纳法作出归纳猜想,再用数学归纳法进行严格证明,这是探索性问题的证法,数列中经常用到。(试值→猜想→证明)【另解】用裂项相消法求和例6、设a=++…+(n∈N),证明:n(n+1)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

浙江省奉化中学高中数学 第17课时 数学归纳法与不等式教案 新人教A版选修4-5

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群