2.1.2数列的递推公式(选学)1.数列{an}满足an+1=an+n,且a1=1,则a5的值为().A.9B.10C.11D.12解析a5=a4+4=a3+3+4=a2+2+3+4=a1+1+2+3+4=11.答案C2.已知数列{an}的首项为a1=1,且满足an+1=an+,则此数列的第4项是().A.B.C.D.解析∵a1=1,an+1=an+,∴a2=×a1+=1,a3=a2+=,a4=a3+=+=.答案B3.设数列{an}中,a1=2,an+1=2an+3,则通项an可能是().A.5-3nB.3·2n-1-1C.5-3n2D.5·2n-1-3解析由a1=2,得a2=2a1+3=7,代入验证得只有D适合.答案D4.已知数列{an}满足a1=-,an=1-(n>1)则a4=.解析a2=1-=5,a3=1-=,a4=1-=-.答案-5.已知数列{an}中,a1=,an=an-1-(n≥2),则an=.解析an=(an-an-1)+(an-1-an-2)…++(a2-a1)+a1…=--++(-)+=-(n-1)+=1-.答案1-6.根据下面各个数列{an}的首项和递推公式,写出它的前五项,并归纳出通项公式.(1)a1=0,an+1=an+(2n-1)(n∈N+);(2)a1=1,an+1=(n∈N+).解(1)a1=0;a2=a1+1=1;a3=a2+3=4;a4=a3+5=9;a5=a4+7=16.由a1=02,a2=12,a3=22,a4=32,a5=42,可归纳出an=(n-1)2.(2)a1=1;a2==;a3==;a4==;a5==.由a1=1=,a2=,a3==,a4=,a5==.可归纳出an=.7.在数列{an}中,a1=2,an+1=an+ln(1+),则an等于().A.2+lnnB.2+(n-1)lnnC.2+nlnnD.1+n+lnn解析由题意可知:an+1=an+ln,即an+1-an=ln(n+1)-lnn,于是an=(an-an-)+(an-1-an-2)…++(a2-a1)+a1=lnn-ln(n-1)+ln(n-1)-ln(n-2)…++ln2-ln1+2=2+lnn.答案A8.已知数列{an}满足an+1=若a1=,则a2012的值为().A.B.C.D.解析计算得a2=,a3=,a4=,故数列{an}是以3为周期的周期数列,又知2010除以3余2,所以a2012=a2=.答案B9.数列{an}中,a1=1,an+1an=an2+(-1)n+1(n∈N*),则=.解析a2=2,a3=,a4=,=.答案10.已知数列的前n项和为Sn,满足log2(1+Sn)=n+1,则数列的通项公式an=________.解析∵log2(1+Sn)=n+1∴1+Sn=2n+1即Sn=2n+1-1当n=1,a1=S1=22-1=3当n≥2,an=Sn-Sn-1=(2n+1-1)-(2n-1)=2n+1-2n=2n∵an=2n,对于n=1,a1=21=2≠3∴通项公式为an=答案11.在数列{an}中,a1=1,a2=,且+=(n≥3,n∈N*),求a3,a4的值.解令n=3,则+=,将a1=1,a2=代入,=-=3-1=2,∴a3=.令n=4,则+=,将a2=,a3=代入,=-=4-=,∴a4=.12.(创新拓展)设{an}是首项为1的正项数列,且(n+1)an+12-nan2+an+1an=0(n=1,2,3…,),求它的通项公式.解∵(n+1)an+12-nan2+an+1an=0,∴(an+1+an)[(n+1)an+1-nan]=0.又∵an>0,∴an+1+an>0.∴(n+1)an+1-nan=0,即=.∴···…·=×××…×.∴=.又a1=1,∴an=.