1/8北师大版《数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理(1)直角三角形两直角边a,b的平方和等于斜边c的平方,即222cba(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法⋯⋯(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理如果三角形的三边长a,b,c有关系222cba,那么这个三角形是直角三角形。3、勾股数:满足222cba的三个正整数a,b,c,称为勾股数。常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)⋯⋯规律:(1),短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。即当a为奇数且a<b时,如果b+c=a2那么a,b,c就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)⋯⋯(2)大于2的任意偶数,2n(n>1)都可构成一组勾股数分别是:2n,n2-1,n2+1如:(6,8,10)(8,15,17)(10,24,26)⋯⋯4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积⋯⋯(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度//斜边上的高线/周长/面积⋯⋯(3)判定三角形形状:a2+b2>c2锐角~,a2+b2=c2直角~,a2+b2<c2钝角~判定直角三角形a..找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状(4)构建直角三角形解题例1.已知直角三角形的两直角边之比为3:4,斜边为10。求直角三角形的两直角边。解:设两直角边为3x,4x,由题意知:()()34100916100251004222222xxxxxx,,,∴x=2,则3x=6,4x=8,故两直角边为6,8。中考突破(1)中考典题例.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE位置上,如图(2)所示,测得得BD=0.5米,求梯子顶端A下落了多少米?AAECBCBD(1)(2)思维入门指导:梯子顶端A下落的距离为AE,即求AE的长。已知AB和BC,根据勾股定理可求AC,只要求出EC即可。解:在Rt△ACB中,AC2=AB2-BC2=2.52-1.52=4,∴AC=2 BD=0.5,∴CD=2在中,RtECDECEDCD22222252225..∴EC=1.5AEACEC21505..答:梯子顶端下滑了0.5米。点拨:要考虑梯子的长度不变。例5.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积。ADCB思维入门指导:求面积时一般要把不规则图形分割成规则图形,若连结BD,似乎不得要领,连结,求出即可。ACSSABCACD解:连结AC,在Rt△ADC中,2/8ADCBACCDAD22222129225AC15在△ABC中,AB2=1521ACBC222215361521ABACBCACB22290,°SSACBCADCDABCACD121212153612129270542162()m答:这块地的面积是216平方米。点拨:此题综合地应用了勾股定理和直角三角形判定条件。第二章实数基本知识回顾1.无理数的引入。无理数的定义无限不循环小数。20200002233..无理数的表示算术平方根定义如果一个非负数的平方等于,即那么这个非负数就叫做的算术平方根,记为,算术平方根为非负数平方根正数的平方根有个,它们互为相反数的平方根是负数没有平方根定义:如果一个数的平方等于,即,那么这个数就叫做的平方根,记为立方根正数的立方根是正数负数的立方根是负数的立方根是定义:如果一个数的立方等于,即,那么这个数就叫做的立方根,记为xaxaxaaaaxaaaxaxaxaa30.实数及其相关概念概念有理数和无理数统称实数分类有理数无理数或正数负数绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法则、运算规律与有理数的运算法则运算规律相同。一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如π/3+8等;(3)有一定规律,但并不循环的数,如0.1010010001⋯等;(4)某些三角函数值,如sin60o等二、实数的倒数、...