下载后可任意编辑《列方程解决实际问题》教学反思《列方程解决实际问题》教学反思1虽然是第四年教学列方程解决实际问题,但教完第一课时仍觉迷惘,想想我对本单元的认识真是非常功利,认为本单元只要让学生学会两点,一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;二、列方程解答两、三步计算的实际问题。总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。回顾我第一课时的教学,成功之处在于较好地培育了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作下载后可任意编辑为一种顺思维它存在的价值,让学生较轻松的构建方程模型。失败之一:由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写法律规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。失败之二:没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。《列方程解决实际问题》教学反思2列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为X…。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=…,得数的后面反而又下载后可任意编辑加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的。格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我想先教会学生找出题目中等量关系式的本领和方法。我小结出平常做的练习题中常常会出现的一些等量关系,如下:1、根据常用的数量关系确定等量关系。例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?等量关系式:速度×时间=路程。由此可以列出方程:解:设汽车从甲地到乙地需要X小时。X×130=1820X=1820÷13X=14答:汽车从甲地到乙地需要14小时。2、根据几何公式确定等量关系。例如:平行四边形的面积是11.2平方米,底是5.6米,它的高是多少米?等量关系式:底×高=平行四边形的面积,根据这个公下载后可任意编辑式列出方程。解:设平行四边形的高是X米。5.6X=11.2X=11.2÷5.6X=2答:平行四边形的高是2米。3、根据题目中有比较意义的关键句确定等量关系。类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:第一,找出题目中有比较意义的关键句;第二,根据关键句中,文字表述的顺序列出等量关系式。例1:钢琴的黑键有36个,比白键少16个,白键有多少个?第一,找出有比较意义的关键句“比白键少16个”,第二,根据关键句中文字描述的顺序,“比白键少”,“少”就是“减”,用“白键的个数-16个=黑键的个数”,再根据等量关系式列出方程。解:设白键有x个。x-16=36x=36+16x=52答:白键有52个。下载后可任意编辑例2:一只大象的体重是6吨...