数列解题技巧归纳总结1等差数列前n项和的最值问题:1、若等差数列na的首项10a,公差0d,则前n项和nS有最大值。(ⅰ)若已知通项na,则nS最大100nnaa;(ⅱ)若已知2nSpnqn,则当n取最靠近2qp的非零自然数时nS最大;2、若等差数列na的首项10a,公差0d,则前n项和nS有最小值(ⅰ)若已知通项na,则nS最小100nnaa;(ⅱ)若已知2nSpnqn,则当n取最靠近2qp的非零自然数时nS最小;数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。⑵已知nS(即12()naaafn)求na,用作差法:11,(1),(2)nnnSnaSSn。已知12()naaafn求na,用作商法:(1),(1)(),(2)(1)nfnfnanfn。⑶已知条件中既有nS还有na,有时先求nS,再求na;有时也可直接求na。⑷若1()nnaafn求na用累加法:11221()()()nnnnnaaaaaaa1a(2)n。⑸已知1()nnafna求na,用累乘法:121121nnnnnaaaaaaaa(2)n。⑹已知递推关系求na,用构造法(构造等差、等比数列)。特别地,(1)形如1nnakab、1nnnakab(,kb为常数)的递推数列都可以用待定系数法转化为公比为k的等比数列后,再求na;形如1nnnakak的递推数列都可以除以nk得到一个等差数列后,再求na。(2)形如11nnnaakab的递推数列都可以用倒数法求通项。(3)形如1knnaa的递推数列都可以用对数法求通项。(7)(理科)数学归纳法。数列解题技巧归纳总结2(8)当遇到qaadaannnn1111或时,分奇数项偶数项讨论,结果可能是分段一、典型题的技巧解法1、求通项公式(1)观察法。(2)由递推公式求通项。对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、?已知{an}满足an+1=an+2,而且a1=1。求an。例1、解? an+1-an=2为常数∴{an}是首项为1,公差为2的等差数列∴an=1+2(n-1)即an=2n-1例2、已知{}na满足112nnaa,而12a,求na=?(2)递推式为an+1=an+f(n)例3、已知{}na中112a,12141nnaan,求na.解:由已知可知)12)(12(11nnaann)121121(21nn令n=1,2,⋯,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+⋯+(an-an-1)★说明?只要和f(1)+f(2)+⋯+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,⋯,(n-1)代入,可得n-1个等式累加而求an。(3)递推式为an+1=pan+q(p,q为常数)例4、{}na中,11a,对于n>1(n∈N)有132nnaa,求na.解法一:由已知递推式得an+1=3an+2,an=3an-1+2。两式相减:an+1-an=3(an-an-1)因此数列{an+1-an}是公比为3的等比数列,其首项为a2-a1=(3×1+2)-1=4∴an+1-an=4·3n-1 an+1=3an+2?∴3an+2-an=4·3n-1即an=2·3n-1-1解法二:上法得{an+1-an}是公比为3的等比数列,于是有:a2-a1=4,a3-a2=4·3,a4-a3=4·32,⋯,an-an-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为an+1=pan+qn(p,q为常数))(3211nnnnbbbb由上题的解法,得:nnb)32(23∴nnnnnba)31(2)21(32(5)递推式为21nnnapaqa思路:设21nnnapaqa,可以变形为:211()nnnnaaaa,想于是{an+1-αan}是公比为β的等比数列,就转化为前面的类型。求na。数列解题技巧归纳总结3(6)递推式为Sn与an的关系式关系;(2)试用n表示an。∴)2121()(1211nnnnnnaaSS∴11121nnnnaaa∴nnnaa21211上式两边同乘以2n+1得2n+1an+1=2nan+2则{2nan}是公差为2的等差数列。∴2nan=2+(n-1)·2=2n2.数列求和问题的方法(1)、应用公式法等差、等比数列可直接利用等差、等比数列的前n项和公式求和,另外记住以下公式对求和来说是有益的。1+3+5+⋯⋯+(2n-1)=n2【例8】求数列1,(3+5),(7+9+10),(13+15+17+19),⋯前n项的和。解?本题实际是求各奇数的和,在数列的前n项中,共有1+2+⋯+n=)1(21nn个奇数,∴最后一个奇数为:1+[21n(n+1)-1]×2=n2+n-1因此所求数列的前n项的和为(2)、分解转化法对通项进行分解、组合,转化为等差数列或等比数列求和。【例9】求和S=1·(n2-1)+2·(n2-22)+3·(n2-32)+⋯+n(n2-n2)解?S=n2(1+2+3+⋯+n)-(13+23+33+⋯+n3)(3)、倒序相加法适用于给定式子中与首末两项之和具有典型的规律的数列,采取把正着写与倒着写的两个和式相加,...