2015-2016学年浙江省杭州二中高一(下)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,AB=,AC=1,B=,则△ABC的面积是()A.B.C.或D.或2.已知P是边长为2的正△ABC的边BC上的动点,则()A.最大值为8B.是定值6C.最小值为2D.是定值23.数列{an}满足a1=2,,则a2016=()A.﹣2B.﹣1C.2D.4.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(sin,cos),则sin(2α﹣)=()A.B.﹣C.D.﹣5.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣6.在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.已知函数f(x)=asinx﹣bcosx(a,b为常数,x∈R)在x=处取得最小值,则函数y=f(﹣x)的图象关于()中心对称.A.(,0)B.(,0)C.(,0)D.(,0)8.若A,B是锐角三角形ABC的两个内角,则以下选项中正确的是()A.sinA<sinBB.sinA<cosBC.tanAtanB>1D.tanAtanB<19.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且=,则使得为整数的正整数n的个数是()A.5B.4C.3D.210.扇形OAB中,∠AOB=90°,OA=2,其中C是OA的中点,P是上的动点(含端点),若实数λ,μ满足=λ+μ,则λ+μ的取值范围是()A.[1,]B.[1,]C.[1,2]D.[1,]二、填空题:本大题共6小题,每小题4分,共24分.11.+=.12.已知数列{an}是等差数列,a2+a7=12,a4a5=35,则an=.13.已知α,β∈(0,π),且cosα=,sin(α+β)=,则cosβ=.14.在△ABC中,O为△ABC的外心,满足15+8+17=,则∠C=.15.已知Rt△ABC中,两直角边分别为a、b,斜边和斜边上的高分别为c、h,则的取值范围是.16.若正实数x,y,z满足x2+y2=9,x2+z2+xz=16,y2+z2+yz=25,则2xy+xz+yz=.三、解答题:本大题共4小题.共46分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.18.己知等差数列{an},设其前n项和为Sn,满足S5=20,S8=﹣4.(1)求an与Sn;(2)设cn=anan+1an+2,Tn是数列{cn}的前n项和,若对任意n∈N+,Tn≤恒成立,求实数m的取值范围.19.如图,某房产开发商计划在一正方形土地ABCD内建造一个三角形住宅区,在其余土地种植绿化,住宅区形状为三角形APQ,其中P位于边CB上,Q位于边CD上.已知,∠PAQ=,设∠PAB=θ,记绿化率L=1﹣,若L越大,则住宅区绿化越好.(1)求L(θ)关于θ的函数解析式;(2)问当θ取何值时,L有最大值?并求出L的最大值.20.已知=(sinx,cosx),=(sinx,k),=(﹣2cosx,sinx﹣k).(1)当x∈[0,]时,求|+|的取值范围;(2)若g(x)=(+)•,求当k为何值时,g(x)的最小值为﹣.2015-2016学年浙江省杭州二中高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,AB=,AC=1,B=,则△ABC的面积是()A.B.C.或D.或【考点】正弦定理.【分析】先由正弦定理求得sinC的值,进而求得C,根据三角形内角和求得A,最后利用三角形面积公式求得答案.【解答】解:由正弦定理知=,∴sinC==,∴C=,A=,S=AB•ACsinA=或C=,A=,S=AB•ACsinA=.故选D2.已知P是边长为2的正△ABC的边BC上的动点,则()A.最大值为8B.是定值6C.最小值为2D.是定值2【考点】向量在几何中的应用.【分析】先设=,=,=t,然后用和表示出,再由=+将=、=t代入可用和表示出,最后根据向量的线性运算和数量积运算可求得的值,从而可得到答案.【解答】解:设===t则=﹣=﹣,2=4=2•=2×2×cos60°=2=+=+t﹙﹣﹚=﹙1﹣t﹚+t+=+•﹙+﹚=﹙﹙1﹣t﹚+t﹚•﹙+﹚=﹙1﹣t﹚2+[﹙1﹣t﹚+t]+t2=﹙1﹣t﹚×4+2+t×4=6故选B.3.数列{an}满足a1=2,,则a2016=()A.﹣2B.﹣1C.2D.【考点】数列递推式.【分析】数列{an}满足a1=2,,求出前4...