解答题专题练(四)概率与统计(建议用时:60分钟)1.某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.2.某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.3.(2015·聊城第一次模拟)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).4.(2015·滨州联考)在某次考试中,从甲、乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格.(1)用样本估计总体,请根据茎叶图对甲、乙两个班级的成绩进行比较;(2)求从甲班10名学生和乙班10名学生中各抽取一人,求有人及格的条件下乙班同学不及格的概率;(3)从甲班10人中抽取1人,乙班10人中抽取2人,3人中及格人数记为X,求X的分布列和期望.5.(2015·德州模拟)甲、乙两名射击运动员进行射击比赛,射击次数相同,已知两名运动员击中的环数稳定在7环、8环、9环、10环,他们比赛成绩的统计结果如下:环数击中频率选手78910甲0.20.150.3乙0.20.20.35请你根据上述信息,解决下列问题:(1)估计甲、乙两名射击运动员击中的环数都不少于9环的概率;(2)若从甲、乙运动员中只能挑选一名参加某大型比赛,请你从随机变量均值意义的角度,谈谈让谁参加比较合适?6.某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W121518P0.30.50.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.解答题专题练(四)概率与统计1.解:(1)设“当天小王的该银行卡被锁定”为事件A,则P(A)=××=.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=,P(X=2)=×=,P(X=3)=××1=.所以X的分布列为X123P所以E(X)=1×+2×+3×=.2.解:(1)由题意,参加集训的男、女生各有6名.参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为=.因此,A中学至少有1名学生入选代表队的概率为1-=.(2)根据题意,X的可能取值为1,2,3.P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为X123P因此,X的数学期望为E(X)=1×P(X=1)+2×P(X=2)+3×P(X=3)=1×+2×+3×=2.3.解:(1)由题知,P(80≤X<85)=-P(X<75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P=A×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=3×0.4×0.62=0.432,P(ξ=2)=3×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是ξ0123P0.2160.432...