电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

河南省武陟二中高中数学立体几何专题VIP免费

河南省武陟二中高中数学立体几何专题_第1页
1/20
河南省武陟二中高中数学立体几何专题_第2页
2/20
河南省武陟二中高中数学立体几何专题_第3页
3/20
武陟二中立体几何专题命题人:张进涛1.(05全国卷)(18)(本大题满分12分)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点奎屯王新敞新疆(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小奎屯王新敞新疆2.(06全国卷)(19)(本小题满分12分)如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.(Ⅰ)证明:ED为异面直线BB1与AC1的公垂线;(Ⅱ)设AA1=AC=AB,求二面角A1-AD-C1的大小.3.(07全国卷1)(19)(本小题满分12分)四棱锥中,底面为平行四边形,侧面底面.已知,,,.(Ⅰ)证明;(Ⅱ)求直线与平面所成角的大小.4.(07全国卷2)19.(本小题满分12分)用心爱心专心ABCDPMABCDEA1B1C1DBCASAEBCFSDHGM如图,在四棱锥中,底面为正方形,侧棱底面分别为的中点.(1)证明平面;(2)设,求二面角的大小.5.(全国一18)(本小题满分12分)四棱锥中,底面为矩形,侧面底面,,,.(Ⅰ)证明:;(Ⅱ)设与平面所成的角为,求二面角的大小.6.(全国二19)(本小题满分12分)如图,正四棱柱中,,点在上且.(Ⅰ)证明:平面;(Ⅱ)求二面角的大小.用心爱心专心CDEABABCDEA1B1C1D17.3.(北京卷16)如图,在三棱锥中,,,,.(Ⅰ)求证:;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.8.(四川卷19).(本小题满分12分)如,平面平面,四边形与都是直角梯形,,(Ⅰ)证明:四点共面;(Ⅱ)设,求二面角的大小;9.天津卷(19)(本小题满分12分)如图,在四棱锥中,底面是矩形.已知.(Ⅰ)证明平面;(Ⅱ)求异面直线与所成的角的大小;(Ⅲ)求二面角的大小.10.安徽卷(18).(本小题满分12分用心爱心专心ACBPNMABDCO如图,在四棱锥中,底面四边长为1的菱形,,,,为的中点,为的中点(Ⅰ)证明:直线;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离。11.山东卷(20)(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.答案1.解:本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力奎屯王新敞新疆满分12分奎屯王新敞新疆用心爱心专心方案一:(Ⅰ)证明: PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE//CA,且BE=CA,则∠PBE是AC与PB所成的角.连结AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=,PB=,(Ⅲ)解:作AN⊥CM,垂足为N,连结BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角奎屯王新敞新疆 CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN·MC=,.∴AB=2,故所求的二面角为方法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,.(Ⅰ)证明:因又由题设知AD⊥DC,且AP与与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD奎屯王新敞新疆(Ⅱ)解:因用心爱心专心EABCDPMNABCDPMNxzy由此得AC与PB所成的角为(Ⅲ)解:在MC上取一点N(x,y,z),则存在使要使为所求二面角的平面角.2.解法一:(Ⅰ)设O为AC中点,连接EO,BO,则EO\s\up()∥C1C,又C1C\s\up()∥B1B,所以EO\s\up()∥DB,EOBD为平行四边形,ED∥OB.……2分 AB=BC,∴BO⊥AC,又平面ABC⊥平面ACC1A1,BO面ABC,故BO⊥平面ACC1A1,∴ED⊥平面ACC1A1,BD⊥AC1,ED⊥CC1,∴ED⊥BB1,ED为异面直线AC1与BB1的公垂线.……6分(Ⅱ)连接A1E,由AA1=AC=AB可知,A1ACC1为正方形,∴A1E⊥AC1,又由ED⊥平面ACC1A1和ED...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

河南省武陟二中高中数学立体几何专题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部