考点规范练67坐标系与参数方程考点规范练A册第46页基础巩固组1.(2015河北衡水中学二模)在直角坐标系xOy中,曲线C的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,曲线P的方程为ρ2-4ρcosθ+3=0.(1)求曲线C的普通方程和曲线P的直角坐标方程;(2)设曲线C和曲线P的交点为A,B,求|AB|.解:(1)曲线C的普通方程为x-y-1=0.曲线P的直角坐标方程为x2+y2-4x+3=0.(2)曲线P可化为(x-2)2+y2=1,表示圆心为(2,0),半径r=1的圆,则圆心到直线C的距离为d=,所以|AB|=2.2.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos=1,M,N分别为曲线C与x轴,y轴的交点.(1)写出曲线C的直角坐标方程,并求M,N的极坐标;(2)设M,N的中点为P,求直线OP的极坐标方程.解:(1)由ρcos=1得,ρcosθ·cos+ρsinθ·sin=1.即曲线C的直角坐标方程为x+y-2=0.令y=0,则x=2;令x=0,则y=.∴M(2,0),N.∴M的极坐标为(2,0),N的极坐标为.(2)M,N连线的中点P的直角坐标为,P的极角为θ=.∴直线OP的极坐标方程为θ=(ρ∈R).导学号〚92950606〛3.(2015沈阳一模)在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α=.(1)写出圆C的普通方程和直线l的参数方程;(2)设直线l与圆C相交于A,B两点,求|PA|·|PB|的值.解:(1)消去θ,得圆的普通方程为x2+y2=16.直线l的参数方程为即(t为参数).(2)把直线l的参数方程代入x2+y2=16,得=16,即t2+(2+)t-11=0.所以t1t2=-11,即|PA|·|PB|=11.导学号〚92950607〛4.(2015福建,理21(2))在平面直角坐标系xOy中,圆C的参数方程为(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为ρ·sin=m(m∈R).(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.解:(1)消去参数t,得到圆C的普通方程为(x-1)2+(y+2)2=9.由ρsin=m,得ρsinθ-ρcosθ-m=0.所以直线l的直角坐标方程为x-y+m=0.(2)依题意,圆心C到直线l的距离等于2,即=2,解得m=-3±2.5.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知点A的极坐标为,直线l的极坐标方程为ρcos=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.解:(1)由点A在直线ρcos=a上,可得a=.所以直线l的方程可化为ρcosθ+ρsinθ=2,从而直线l的直角坐标方程为x+y-2=0.(2)由已知得圆C的直角坐标方程为(x-1)2+y2=1,所以圆C的圆心为(1,0),半径r=1.因为圆心C到直线l的距离d=<1,所以直线l与圆C相交.6.(2015陕西,理23)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,☉C的极坐标方程为ρ=2sinθ.(1)写出☉C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解:(1)由ρ=2sinθ,得ρ2=2ρsinθ,从而有x2+y2=2y,所以x2+(y-)2=3.(2)设P,又C(0,),则|PC|=,故当t=0时,|PC|取得最小值,此时,P点的直角坐标为(3,0).导学号〚92950608〛能力提升组7.已知曲线C:=1,直线l:(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解:(1)曲线C的参数方程为(θ为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任意一点P(2cosθ,3sinθ)到l的距离为d=|4cosθ+3sinθ-6|,则|PA|=|5sin(θ+α)-6|,其中α为锐角,且tanα=.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.导学号〚92950609〛8.(2015河北石家庄高三质检二)在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为ρcos.(1)把曲线C1的方程化为普通方程,C2的方程化为直角坐标方程;(2)若曲线C1,C2相交于A,B两点,AB的中点为P,过点P作曲线C2的垂线交曲线C1于E,F两点,求|PE|·|PF|的值.解:(1)消去参数可得C1:y2=4x,C2:x-y-1=0.(2)设A(x1,y1),B(x2,y2),且AB中点为P(x0,y0),联立可得x2-6x+1=0.∴x1+x2=6,x1x2=1,∴∴AB中垂线的参...