指数函数、幂函数、对数函数增长的比较信息技术支持的函数研究必备知识基础练进阶训练第一层知识点一指数函数、幂函数、对数函数增长的差异1.当x越来越大时,下列函数中,增长速度最快的应该是()A.y=10000xB.y=log2xC.y=x1000D.y=x2.四个变量y1,y2,y3,y4随变量x变化的数据如下表:x151015202530y1226101226401626901y22321024327681.05×1063.36×1071.07×109y32102030405060y424.3225.3225.9076.3226.6446.907关于x呈指数函数变化的变量是________.知识点二指数函数、幂函数、对数函数增长的比较3.下面对函数f(x)=logx,g(x)=x与h(x)=x在区间(0,+∞)上的衰减情况的叙述正确的是()A.f(x)的衰减速度逐渐变慢,g(x)的衰减速度逐渐变快,h(x)的衰减速度逐渐变慢B.f(x)的衰减速度逐渐变快,g(x)的衰减速度逐渐变慢,h(x)的衰减速度逐渐变快C.f(x)的衰减速度逐渐变慢,g(x)的衰减速度逐渐变慢,h(x)的衰减速度逐渐变慢D.f(x)的衰减速度逐渐变快,g(x)的衰减速度逐渐变快,h(x)的衰减速度逐渐变快4.当2x2>log2xB.x2>2x>log2xC.2x>log2x>x2D.x2>log2x>2x5.函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象关于点A(x1,y1),B(x2,y2),且x10,xa>logaxC.对任意的x>0,ax>logaxD.一定存在x0,当x>x0,a>1,n>0时,总有ax>xn>logax3.已知-1<α<0,则()A.0.2α>α>2αB.2α>0.2α>αC.α>0.2α>2αD.2α>α>0.2α4.有一组实验数据如下表所示:x12345y413284976下列所给函数模型较适合的是()A.y=logax(a>1)B.y=ax+b(a>1)C.y=ax2+b(a>0)D.y=logax+b(a>1)5.据报道,某淡水湖的湖水在50年内减少了10%,若按此规律,设2019年的湖水量为m,从2019年起,经过x年后湖水量y与x的函数关系为()A.y=0.9B.y=(1-0.1)mC.y=0.9mD.y=(1-0.150x)m6.(探究题)某校甲、乙食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知该年9月份两食堂的营业额又相等,则该年5月份()A.甲食堂的营业额较高B.乙食堂的营业额较高C.甲、乙两食堂的营业额相同D.不能确定甲、乙哪个食堂的营业额较高7.函数y=x2与函数y=xlnx在区间(1,+∞)上增长较快的一个是________.8.某种病菌经30分钟繁殖为原来的2倍,且知这种病菌的繁殖规律为y=ekt(k为常数,t为时间,单位:小时),y表示病菌个数,则k=________,经过5小时,1个病菌能繁殖为________个.9.(易错题)某工厂8年来某种产品的总产量C与时间t(年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的的序号是________.10.函数f(x)=lgx,g(x)=0.3x-1的图象如图.(1)指出曲线C1,C2分别对应哪一个函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).学科素养升级练进阶训练第三层1.(多选题)甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x...