电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第九章 计数原理与概率 课时达标57 随机事件的概率-人教版高三全册数学试题VIP免费

高考数学一轮复习 第九章 计数原理与概率 课时达标57 随机事件的概率-人教版高三全册数学试题_第1页
1/3
高考数学一轮复习 第九章 计数原理与概率 课时达标57 随机事件的概率-人教版高三全册数学试题_第2页
2/3
高考数学一轮复习 第九章 计数原理与概率 课时达标57 随机事件的概率-人教版高三全册数学试题_第3页
3/3
第57讲随机事件的概率[解密考纲]考查随机事件、频率、概率等概念,考查概率的性质和加法公式,常以选择题、填空题的形式出现.一、选择题1.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系为(A)A.两个任意事件B.互斥事件C.非互斥事件D.对立事件解析因为A,B互斥时,P(A∪B)=P(A)+P(B).反之不一定成立.所以A,B不一定是互斥事件,选A.2.(2018·福建厦门模拟)口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为(D)A.0.45B.0.67C.0.64D.0.32解析摸出红球的概率为0.45,摸出白球的概率为0.23,故摸出黑球的概率P=1-0.45-0.23=0.32.3.已知甲、乙两人下棋,和棋的概率为,乙胜的概率为,则甲胜的概率和甲不输的概率分别为(C)A.,B.,C.,D.,解析“甲胜”是“和棋或乙胜”的对立事件,所以“甲胜”的概率为1--=.设“甲不输”为事件A,可看做是“甲胜”与“和棋”这两个互斥事件的和事件,所以P(A)=+=.4.某小组有5名男生和4名女生,从中任选4名同学参加“教师节”演讲比赛,则下列每对事件是对立事件的是(C)A.恰有2名男生与恰有4名男生B.至少有3名男生与全是男生C.至少有1名男生与全是女生D.至少有1名男生与至少有1名女生解析“恰有2名男生”与“恰有4名男生”是互斥事件,但不是对立事件,排除A项;“至少有3名男生”与“全是男生”可以同时发生,不是互斥事件,排除B项;“至少有1名男生”与“全是女生”不可能同时发生,且必有一个发生,是对立事件,C项正确;“至少有1名男生”与“至少有1名女生”可以同时发生,不互斥,排除D项,故选C.5.有3个相识的人某天各自乘同一火车外出,假设火车有10节车厢,则至少有2人在同一车厢内相遇的概率为(B)A.B.C.D.解析设事件A是“至少有2人在同一车厢内相遇”,则事件是“3人分别在3节不同的车厢”,P()==,所以P(A)=1-P()=1-=.6.连续投掷两次骰子得到的点数分别为m,n,向量a=(m,n)与向量b=(1,0)的夹角记为α,则α∈的概率为(B)A.B.1C.D.解析cos〈a,b〉=, α∈,∴<<1,∴n

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第九章 计数原理与概率 课时达标57 随机事件的概率-人教版高三全册数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群