古典概型课时作业1.(2019·新疆乌鲁木齐第三次质检)从1,2,3,4,5,6中任意取出两个不同的数,其和为7的概率为()A.B.C.D.答案B解析从1,2,3,4,5,6中任意取出两个不同的数,共有15种不同的取法,它们分别是{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15种.从1,2,3,4,5,6中任意取出两个不同的数,它们的和为7,则不同的取法为{1,6},{2,5},{3,4},共3种,故所求的概率为,故选B.2.(2019·安徽江淮十校最后一卷)《易经》是我国古代预测未来的著作.其中有同时抛掷三枚古钱币观察正反面来预测未知,则抛掷一次时出现两枚正面一枚反面的概率为()A.B.C.D.答案C解析抛掷三枚古钱币出现的基本事件共有{正正正},{正正反},{正反正},{反正正},{正反反},{反正反},{反反正},{反反反},共8种,其中出现两正一反的基本事件共3种,故概率为.故选C.3.(2019·山东潍坊三模)五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成.如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A.B.C.D.答案A解析从金、木、水、火、土中任取2类,包含的基本事件为金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共10种,其中2类元素相生的基本事件包含木火、火土、水木、金水、土金,共5种,所以2类元素相生的概率为=,故选A.4.(2019·湖南六校联考)某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红4种颜色中任意挑选2种颜色,则所选颜色中含有白色的概率是()A.B.C.D.答案B解析从黄、白、蓝、红4种颜色中任意选2种颜色的所有基本事件有{黄白},{黄蓝},{黄红},{白蓝},{白红},{蓝红},共6种.其中包含白色的基本事件有3种,所以选中的颜色中含有白色的概率为,故选B.5.(2019·湖南雅礼中学模拟二)甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为()A.B.C.D.答案C解析甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人共有4种情况,包含(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁).其中甲、乙将贺年卡都送给丁的情况只有一种,其概率是,故选C.6.(2019·辽宁大连二模)一个口袋中装有5个球,其中有3个红球,其余为白球,这些球除颜色外完全相同,若一次从中摸出2个球,则至少有1个红球的概率为()A.B.C.D.答案A解析由题意知白球有5-3=2个,记三个红球为A,B,C,两个白球为a,b.一次摸出2个球所有可能的结果为AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10种,至少有一个红球的结果为AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,共9种.∴所求概率P=.7.(2019·江西景德镇第二次质检)袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件A,用随机模拟的方法估计事件A发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:232321230023123021132220001231130133231031320122103233由此可以估计事件A发生的概率为()A.B.C.D.答案C解析事件A包含“瓷”“都”两字,即包含数字0和1,随机产生的18组数中,包含0,1的有021,001,130,031,103,共5组,故所求概率为P=,故选C.8.(2019·湖北4月联考)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,若抽得的第一张卡片上的数小于第二张卡片上的数的概率为p1,抽得的第一张卡片上的数大于第二张卡片上的数的概率为p2,抽得的第一张卡片上的数等于第二张卡片上的数的概率为p3,则()A.p1+p2=1B.p2
p3D.p1=p2=答案C解析从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=25,抽得的第一张卡片上的数小于第二张卡片上的数包含的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5...